Calorimeter Simulation Infrastructure

Norman A. Graf January 9, 2006

Outstanding Issues

Electromagnetic calorimeter energy resolution
Hadronic calorimeter simulations
Refined detector geometries
Far forward detectors
Reconstruction infrastructure

EM energy resolution

Using default set of range cuts, Geant4 returns a poorer energy resolution than expected for sampling calorimeters with very thin sensitive layers.

• For SiD, with ~300micron Si, get ~20%, vs ~16% expected.

This can be remedied by running with smaller range cuts in the absorber material, but one must go to very small values, and program slows by factor of 10-20.

EM energy resolution

Recently released Geant4 v8 has modifications which address this issue.

- Essentially reduces range cut as one approaches a volume boundary.
- Reduces sensitivity of dependence on range cut.
- Adds slight overhead in runtime to handle additional geometry queries.
- Beginning systematic studies, but hampered by lack of testbeam data.
- See <u>talk</u> by David Ward at Vienna.

Hadronic Calorimetry

- Still expending a large amount of effort trying to understand the simulation of hadronic showers and how to measure energy with digital readout.
 - See talk by Ron Cassell.
- *Need a common approach to specifying how to consistently handle analog vs digital readout.
 - Common definitions of density for digital readout?

Refined detector geometries

- Current simulations employ cylindrical barrels and endcaps. After gross optimizations, would like to also be able to simulate buildable detectors.
- *lcdd format handles arbitrarily complex
 geometries.
- Compact geometry format which provides input to GeomConverter currently does not.
- Refactoring just beginning. Would like requirements input from users.

Far Forward Geometries

Electron-tagging in far forward region was investigated by T. Maruyama and N. Graf prior to technology decision. TM has continued to work on this at a low level.

*However, whole forward region (beam cal, lumical, ...) needs to be systematically investigated.

• See talk by Jinlong Zhang.

Some interest by BNL in this region.

Reconstruction Infrastructure

Would like to automate process by which sampling fractions are determined for analog.

- Could build into package such as slicDiagnostics or develop standalone.
- Currently also only have one single value for EM calorimeter. Would like to develop and implement layer-by-layer. Theta-dependence?

Can we agree on digital "sampling fractions"?

• Or is this hopelessly entangled in the clustering definitions?

Reconstruction Infrastructure

Neighbor ID code needed for different calorimeters, e.g. EM/HAD, or Barrel/Endcap

- Need to be able to overlay events at the hit level in order to study pileup.
 - Fairly straighforward to do, but needs someone to work on it.