Cross Calibration of Imaging Air Cherenkov Telescopes with Fermi

A model for the emission of the Crab is derived by comparing it to Fermi measurements. It is used for a
cross calibration of air shower experiments that eliminates the uncertainties on the global energy scales.
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Abstract

An updated model for the synchrotron and inverse Compton emission

high energy y-rays.

to reproduce the measured spectral energy distribution from radio to
By comparing the predicted inverse Compton
component with recent Fermi measurements of the nebula's
emission, it is possible to determine the average magnetic field in the

nebula and to derive the underlying electron energy distribution. The
from a population of high energy electrons of the Crab nebula is used model calculation can then be used to cross calibrate the Fermi
observations with ground-based air shower measurements. The
resulting energy calibration factors are derived and can be used for
combining broad energy measurements taken with Fermi in conjunction
with ground based measurements.
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number of observations.

/ Cross Calibration of IACTs & Fermi
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Seed Photon fields contributing to the inverse

Compton flux:

1) Synchrotron Radiation

2) Emission from thermal dust
3) CMB

4) Optical line emission

The Magnetic Field:

9 Magnetic Field is varied until
flux fits the Fermi data points’

@ dN,, /dy is varied accordingly

to keep observed synchrotron
flux constant
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Discussion of the Magnetic Field:

@ Chandra observations® indicate that the shock
front is at a distance r, = 0.14 pc from the pulsar

(not 0.10 pc as commonly assumed)?
@ MHD calculations® yield an equipartition field of

B <160 UG

@ VHE emitting electrons reside between
1<r/r.<3 (yellow region in plot)

(1227 (stat.) 3% (sys.)) uG
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Cross Calibration can be used to derive upper limits on the diffuse y-ray background:
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=Major uncertainties on energy calibration of IACTs now eliminated

=Upper limits for diffuse y-ray background were derived by taking the maximum (within the
systematic uncertainties) difference between the H.E.S.S. and Fermi flux
= After scaling: ATIC peak unlikely

Aharonian et al. (2009)
Abdo et al. (2009)

/ Summary

measurements by Fermi

experiments

iInstruments

2 An updated SED and electron spectrum have been derived and the B-field has been fixed to

2 The model makes it possible to calculate energy scaling factors for ground based air shower

QII scaling factors lie within 15%, i.e. in the claimed systematic energy uncertainties of the

Outlook

2 Cross Calibration for other bright steady or pulsed sources (e.g. Crab Pulsar, Galactic Center,
Pulsar Wind Nebulae...)
9 Establish Crab Nebula as a “true” standard candle for y-ray astronomy
2 Application for Extragalactic Background Light constraints, Dark Matter searches, electron
spectrum, etc.

Contact: manuel.meyer@desy.de

/

-2

/0

@Essermi

2009 Fermi Symposium

/st \Washington D.C., November 2-5, 2009

Poster ID: P5 - 213



