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Ultracompact primordial dark matter minihalos can be produced in phase Sl

o
transitions in the early Universe. We show that if they contain WIMPs, LS

minihalos produced In the electron-positron annihilation epoch will be found
by Fermi. Minihalos from the QCD phase transition may also be detectable.

Based on Scott & Sivertsson, arXiv:0908.4082 (Phys Rev Letters, In press)

Abstract

Ultracompact primordial dark matter minihalos have recently been proposed as a new class of dark matter structure. Ultracompact minihalos would be
produced by phase transitions in the early Universe, and constitute non-baryonic massive compact halo objects (MACHOs) today. Here we examine the
prospects for detecting ultracompact minihalos in gamma-rays if dark matter consists of self-annihilating particles. We show present-day fluxes from
ultracompact minihalos produced in the electroweak and QCD phase transitions in the early universe, and from the electron-positron annihilation epoch.
Ultracompact minihalos produced during the electron-positron epoch should be eminently detectable today, either by Fermi, current Air Cherenkov telescopes,
or even in archival data from EGRET. If they exist within 2 kpc of Earth, ultracompact minihalos from the electron-positron epoch should also appear as
extended sources to Fermi. Ultracompact minihalos formed in the QCD phase transition have similar predicted fluxes to the dwarf spheroidal galaxies targeted
by Fermi, and might be detectable by future instruments.
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- tionary models give a running spectral index [3], and
S phase transitions could produce scale-dependent features
i in the power spectrum. The present limit at the scale of
g PBH /ultracompact minihalo formation is n < 1.25 [1].
O As they grow by a further factor of 290 between equality
"% i 2 and z = 10, ultracompact minihalos formed in the ete™
v Seott € Sivertsson 2009 annihilation epoch could account for e.g. ~1% of today’s
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~5.5 and ~12 orders smaller, respectively.
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