Spectral features of *Fermi* **Gamma-Ray Bursts revealed by the LAT Low-Energy technique**

V. Pelassa (LPTA), R. Preece (NSSTC, UAH), F. Piron (LPTA), N. Omodei (INFN, Pisa University), S. Guiriec (NSSTC) on behalf of the *Fermi* LAT and GBM collaborations

Abstract

Fermi Large Area Telescope (LAT) data analyses based on event reconstruction and classification are so far restricted to events of measured energy larger than 100 MeV. We present a new technique to recover the signal from Gamma-Ray Bursts' (GRB) prompt emission between ~ 30 MeV and 100 MeV, which differs from the standard LAT analysis. Filling the "gap" between Gamma-ray Burst Monitor and LAT observations allows to better constrain the high-energy spectra of GRB. The LAT Low-Energy (LLE) technique is described, first performance studies are presented, and preliminary spectral re-analyses of two Fermi GRBs are presented.

Sermi

Gamma-ray

Space Telescope

Gamma-ray Space Telescope", ApJ, 697, 1071 (2009) (arXiv : 0902.1089)

A.A. Abdo et al., "Fermi observations of high-energy gamma-ray emission from GRB 080916C" *Science*, 323, 1688 (2009) A.A. Abdo, et al. "Fermi Observations of GRB 090510 : A bright, short burst with a hard power-law component above 100 MeV", ApJL, in prep.

- -time integrated spectrum, Band function fit -LLE data superimposed to other datasets but not fitted \Rightarrow good residuals
- \Rightarrow consistent with the standard analysis
- -time-integrated spectrum, Band + power-law fit
- -LLE and other data fitted together
- \Rightarrow high-energy additional component even more significant : $N_{\sigma} = 8.9 \ (5.6 \text{ without LLE})$
- \Rightarrow spectral evolution may better show up if using the LLE data in the time-resolved spectroscopy