Timing Signatures of the Internal-Shock Model for Blazars

Markus Boettcher (Ohio University), Charles D. Dermer (NRL)

Abstract: We have developed a semi-analytical model for the time-dependent radiative output from the internalshock model for blazars. Accounting for spatial inhomogeneities due to the forward- and reverse-shock propagation and light travel time effects, the synchrotron and external-Compton emissions are evaluated completely analytically, while the synchrotron self-Compton emission is reduced to a two-dimensional integral. We explore the influence of various parameters on the time-averaged spectral energy distributions and timing features for parameters suitable for flat-spectrum radio quasars and low-frequency peaked BL Lac objects. Light curves at various representative photon energies are subjected to the Discrete Correlation Function to evaluate inter-band time lags, as is routinely done for observational data.

Model Setup: Figure 1 illustrates the

geometry of our model: Two shells of initially cold (i.e., internal energy << bulk kinetic energy) plasma with Lorentz factors Γ_a and Γ_b ($\Gamma_b > \Gamma_a >> 1$) collide, leading to a forward shock propagating into shell *a* and a reverse shock propagating into shell *b*.

Fig. 1: Geometry of the shell collision leading to internal shocks in a blazar jet.

Parameter	Symbol	Value
Lorentz Factor of shell a	Γ _a	15
Lorentz Factor of shell b	Γ_{b}	25
Kinetic power of shell a	La	10 ⁴⁷ erg/s
Kinetic power of shell b	L _b	10 ⁴⁷ erg/s
Time scale for ejection of shells	Δt	10 ³ s
Electron equipartition fraction	ε _e	0.2
Magnetic-field equipartition fraction	ε _B	10-3
Electron injection spectral index	q	2.3
External radiation energy density	U _{ext}	10 ⁻⁴ erg/cm ³
External radiation peak frequency	v_{ext}	3*10 ¹⁴ Hz
Cross-sectional radius of shells	R	3*10 ¹⁵ cm
Redshift	Z	0.2

Figure 4 illustrates the DCF results for our baseline model: It predicts lags of the R-band and soft γ -rays behind soft X-rays by ~ 1 – 2 hrs with sub-hr time lags between other bands.

The shocked fluid will move with Lorentz factor Γ with respect to the stationary frame. In the frame comoving with the shocked fluids, the shocks propagate with Lorentz factors $\overline{\Gamma}_{f}$ and $\overline{\Gamma}_{r}$, respectively.

Particle Dynamics: At the shocks, particles are assumed to be accelerated into a power-law distribution with index *q*, with normalization and lowand high-energy cutoffs determined by energy conservation and balancing of acceleration and radiative cooling time scales. Subsequent radiative cooling is taken into account assuming synchrotron + Compton cooling in the Thomson regime, leading to a fully analytical space- and time-dependent electron energy distribution throughout the shocked region.

<u>Radiation:</u> Synchrotron and external-Compton emission is evaluated analytically using a δ -function approximation. The space- and time-dependent synchrotron photon density is also evaluated analytically and used for a numerical computation of the space- and time-dependent SSC emissivity. All time delays from shock- and light-travel time effects are properly taken into account. **Fig. 2**: Snap-shot SEDs from our baseline model, along with the SED time-averaged over 30 ksec (heavy black curves). Dotted vertical lines indicate the frequencies at which light curves have been extracted.

In addition to snap-shot SEDs, we calculate the time-averaged spectrum over an integration time of 30 ksec to investigate averaged SED characteristics.

Light curves have been extracted at four frequencies: Optical (**R**-**band**), X-rays (**1 keV**), soft γ -rays (**1 MeV**), and high-energy γ -rays in the Fermi range (**100 MeV**). Cross-correlations and time lags between the light curves have been investigated using the **Discrete Correlation Function** (DCF; Edelson & Krolik 1988).

The dependence of these features on various parameters has been investigated. As an example, Fig. 5 illustrates the dependence of DCF characteristics on the external radiation field. Most notably, this and other parameter variations may lead to a **change in sign of time lags**, e.g., a transition from an Rband lag behind HE γ -rays to an R-band lead with increasing external radiation energy density.

Baseline Model: For a baseline model, we use parameters reproducing a Spectral Energy Distribution (SED) typical of Flat Spectrum Radio Quasars (FSRQ) or Low-frequency peaked BL Lac Objects (LBL), as listed in the table.

These parameters lead to a bulk Lorentz factor of the shocked fluid of $\Gamma = 18.2$, and we choose the observing angle so that the Doppler factor $D = \Gamma = 18.2$.