





#### Pinpointing the Gamma-Ray Emission Region in M87 using TeV and 43-GHz Radio Monitoring

R. M. Wagner Max-Planck-Institut für Physik, München and Excellence Cluster "Origin and Structure of the Universe", Garching

on behalf of the VERITAS, MAGIC, and H.E.S.S. Collaborations and the M87 43-GHz Monitoring Team

R. M. Wagner: Gamma-Ray Emission Region in M87

## The Giant Elliptical Radio Galaxy M87



- Close-by radio galaxy: ~16.7 Mpc (z=0.00436)
- Radio structure: outflows and halo
- Iet angle: ~30° → not a blazar!
   But inner region < 19°</li>
- Sentral black hole: M<sub>BH</sub>~ 6·10<sup>9</sup> M⊙ Gebhardt+Thomas09
- Highly structured jet, knots resolved in radio, optical and X-rays
- Jet is variable: flares in radio, optical and X-rays
- Inique laboratory to study blazar and jet physics

#### Owen+00

R. M. Wagner: Gamma-Ray Emission Region in M87

#### The Relativistic Plasma Jet of M87

X-ray/optical/radio knots: concentrated structures... shocks?

Sadio/optical: similar polarization synchrotron emission

Synchrotron emission? **X-ray:** spectrum with α=2.0-2.9

Inner jet: superluminal motion (~2c) => relativistic particle population

 Variability time-scales: weeks to months to years

> Predictions of VHE γ-ray and UHECR particle emission



#### The Relativistic Plasma Jet of M87



R. M. Wagner: Gamma-Ray Emission Region in M87

### M87: 10 Years of VHE Observations



R. M. Wagner: Gamma-Ray Emission Region in M87

# The 2008 Joint VHE Campaign

- Coordinated observations: VERITAS/MAGIC/H.E.S.S.
- plus 5 Chandra pointings in 2008
- Coverage: 120h, 50 nights
- Outburst in February 2008
   (2 weeks after a MAGIC trigger, X-ray low-state of HST-1)
- Confirmed short-term variability



#### HST-1: unlikely source of VHE emission

R. M. Wagner: Gamma-Ray Emission Region in M87





### **VHE/Radio Collaboration Reveals...**

VLBA Monitoring of the M87 jet at 43 GHz (2007/8), Walker et al.
Resolution: 0.43x0.21 mas 100 Schwarzschild radii = 0.37 mas (1 mas = 0.078 pc)



Jet formation @ 30 x 60 R<sub>s</sub>
 VHE flare accompanied by radio flare from BH vincinity



#### **VHE/Radio Collaboration Reveals...**





R. M. Wagner: Gamma-Ray Emission Region in M87

#### **VHE/Radio Collaboration Reveals...**

Science 325 (2009) 444



R. M. Wagner: Gamma-Ray Emission Region in M87

## M87 in VHE γ-rays: What did we learn?

First non-blazar emitting VHE γ-rays: Misaligned blazar, AGN unification? Short-term variability: \* Excludes models \* Constrains size of emitting region  $(R < 5 \times 10^{15} \delta \text{ cm}, ~100 \text{ R}_{schw})$ Hard energy spectra: modeling, emission mechanism Upper limit on VHE extension: 14 kpc → location unknown Radio/TeV connection: First experimental evidence: charged particles accelerated in BH vicinity **Key question:** origin/(location)

of the TeV emission



R. M. Wagner: Gamma-Ray Emission Region in M87

Think

#### M87 (non-simultaneous) SED



R. M. Wagner: Gamma-Ray Emission Region in M87

### M87: Importance of Results & Future

#### **TeV/radio connection:**

- TeV emission from BH vicinity
- Important input for TeV modeling
- Accretion & jet formation physics

#### **Future questions:**

- Can pattern be observed repeatedly?
- promising approach! - TeV emission & radio core: How close to BH?
- More detailed sampling of light curves
- Other TeV sources: Similar pattern?



R. M. Wagner: Gamma-Ray Emission Region in M87

2<sup>nd</sup> Fermi Symposium, Washington (DC), November 4, 2009

**Future dense** 

campaigns including

radio and  $\gamma$ -rays: