

The multi-frequency behaviour of Blazars

Based on data from Fermi, Swift + many other observatories

Paolo Giommi Italian Space Agency, ASI and

N. Mazziotta, E. Cavazzuti, S. Colafrancesco, S. Cutini, D. Gasparrini, C. Monte, S. Raino', A. Tramacere

On behalf of the LAT collaboration and many other multi-frequency collaborators

Quasi simultaneous high quality SEDs for 48 LBAS blazars

- A sample oriented approach -

- Data from Fermi, Swift, Effelsberg, OVRO, RATAN, TANAMI-VLBI, GASP-WEBT collaboration, VLT-VISIR, Spitzer, AGILE
- Fermi data integrated during the first three months of operations: 4 August to 31 October 2008.
- Quasi-simultanaous multi-frequency data taken in the interval May 2008 January 2009.
- Archival multi-frequency data (radio to TeV)
- Representative of the entire LAT Bright AGN Sample (LBAS)

Fig. 17.— The SED of 0FGL J1248.7+5811 = PG 1246+586 (left) and of 0FGL J1229.1+0202 = 3C273 (right)

The synchrotron/invC peak frequencies v_{peak} and intensities v_{peak} f(v_{peak})

Measured from the 48 SEDs using 3rd degree polynomial functions

See S. Cutini's poster for details

A method to derive V_{peak}^{s} and V_{peak}^{s} f(V_{peak}^{s}) form α_{ox} and α_{ro}

A "calibrated" version of the method of Padovani & Giommi (1995)

The position of a blazar in the α_{ox} α_{ro} plane is determined by the synchrotron peak energy Paodvani & Giommi 1995, ApJ, 444, 567

γ -ray vs radio/ μ -wave selected samples

Fig. 31.— The distribution of synchrotron peak energy for the sample of LBAS FSRQ (solid line, top panel) and BL Lacs (solid line, bottom panel) compared to that of microwave selected blazars listed in the WMAP foreground sources catalog (dotted histograms). The WMAP counts have been scaled to match the LBAS sample.

γ -ray vs x-ray selected samples

Fig. 32.— The distribution of synchrotron peak energy for the sample of LBAS FSRQ (solid line, top panel) and BL Lacs (solid line, bottom panel) compared to that of the sample of X-ray selected blazars of the *Einstein* Extended Medium Sensitivity Survey (EMSS, dotted histograms). The EMSS counts have been scaled to match the LBAS sample.

WMAP-5yr data

WMAP-5yr data

ROSAT All Sky Survey

ROSAT All Sky Survey

- We have assembled high-quality quasi-simultaneous SED of 48 LBAS blazars. This subset is representative of the entire LBAS
- All Fermi bright blazars have broad-band spectral properties similar to radio and X-ray selected blazars (double bump SEDs, same area of aox-aro plane, but no UHBLs... so far)
- We have estimated the syncrhotron and "iC" peak energy and intensities for all 106 sources in the sample.
- The distribution of synchrotron and "i-Compton" $\nu_{\mbox{\tiny peak}}$ distributions are very different for FSRQs and BL Lacs.
 - FSRQs $v_{p_{eak}}^{s}$ values range between 10^{12.5} Hz and 10^{14.5} Hz

BL Lacs v_{peak}^{s} values range between 10¹³ Hz and 10¹⁷ Hz

- There is a strong correlation between both $\,\nu^{s}_{_{peak}},\,\nu^{_{iC}}_{_{peak}}$ and the gamma-ray spectral slope
- The overabundance of HBL (HSP) BL Lac is a selection effect similar to what experienced in the X-ray band

- HBL (HSP) BL Lacs radiate close to the predictions of simple one-zone SSC models
- Over 50% of known HSP BL Lacs (fr > 300 mJy) are detected as bright Fermi sources.
- LBAS FSRQs and LBL/LSP BL Lacs (all LSPs) emit much more gamma-rays than predicted by SSC, requiring additional mechanism (e.g. EC, or multiple components)
- However, only ~13% of FSRQs brighter than 500 mJy in the Bzcat or in WMAP-5yr catalogs are detected in LBAS, despite having similar properties (same redshift, Vmag, v_{peak}^{s} distributions etc). It is therefore possible/probable that the majority of FSRQs actually radiate not too far from simple SSC.