Probing Extragalactic Media with VHE γ-rays from Cosmologically Distant Blazars

Timothy C. Arlen¹, Vladimir Vassiliev¹, Stephen Fegan², Tom Weisgarber³, Scott Wakely³

¹University Of California-Los Angeles, ²LLR/Ecole Polytechnique/CNRS/IN2P3, Palaiseau, France ³University of Chicago

Fermi Symposium, Nov 4, 2009

The Goal

 Use results of numerical simlations of HE-VHE γ-ray blazar emission as a probe for the Intergalactic Magnetic Field (IGMF) strength, and Extragalactic Background Light (EBL) in the UV - IR

Fermi Symposium, Nov 4, 2009

Extragalactic Magnetic Fields

Fermi Symposium, Nov 4, 2009

HE/VHE Gamma Ray Observations to Constrain IGMF

- Halo Emission:
 - Aharonian F.A., Coppi
 P.S., Volk H.J., Ap.J., 423,
 L5 (1994)
 - Dolag K., Kachelriess M., Ostapchenko S. and Tomas R., arXiv:0903.2842 (2009).
 - Elyiv, Neronov, Semikoz.
 Astroph arXiv:0903.3649 (2009)

- Time Delay of Secondary Emission:
 - Plaga R., Nature 374, 430 (1995).
 - Murase K., Takahashi K.,
 Inoue S., Ichiki K.,
 Nagataki S., arXiv:
 0806.2829 (2008).

Secondary Emission Time Scale

Fermi Symposium, Nov 4, 2009

Mean Secondary Arrival Times

Fermi Symposium, Nov 4, 2009

Blazar Flaring

Fermi Symposium, Nov 4, 2009

Energy Spectrum Modification

B = 1e-14 gauss, z = 0.1

Fermi Symposium, Nov 4, 2009

Energy Spectrum, z = 0.1 · Prompt • Sec Pt Source

AGIS/CTA

- •Collecting Area > 1 km²
- •Telescope 11.5m Schwarzschild-Couder •FOV – 8 deg
- •Angular Resolution few arcminutes
- •Sensitivity 0.1 % Crab (50 hr) Fermi Symposium, Nov 4, 2009

Proposed as the next generation ground-based γ -ray observatory

Conclusions

- Halo and "sec pt source" (baseline) fluxes provide information about: IGMF, intrinsic source spectra, and EBL SED.
- For Hard source spectra:
 - For IGMF ~10⁻¹⁴ 10⁻¹⁶ gauss, Fermi may be able to detect halo flux in a few years of observations.
 - For IGMF ~10⁻¹² 10⁻¹⁴ gauss, VERITAS may be able to detect halo or pt source baseline emission, given deep observations (≥ 100 hr).
- AGIS/CTA will be able to detect these effects with lower exposure, from softer spectrum sources, at larger redshifts. In addition, its energy range is extended to < 100 GeV, which is critical for such observations of IGMF effects.

Conclusions

