

PSR J1907+0602:

 A Radio-Faint Gamma-RayPulsar Powering A Bright TeV PWN

Aous Abdo
Naval Research Laboratory On Behalf of the Fermi LAT Collaboration and the

Fermi Pulsar Search Consortium

- History
- MGRO J1908+06, an extended TeV source discovered with Milagro at median energies of 20 TeV .
- Spectrum measured by other ground-based TeV telescopes at lower energies ($0.3-20 \mathrm{TeV}$) (HESS and VERITAS)
- What's new here?
- We have discovered a pulsar in a blind search with the Fermi LAT within the Milagro source.
- Detected an X-ray source with Chandra with spectrum consistent with neutron star.
- Detected weak radio pulsations with the Arecibo radio telescope.
- Submitted to ApJ
- Extended TeV gamma-ray emission with ~ 0.3 degree extension.
- Photon index of 2.1 and a flux at 20 $\mathrm{TeV} 80 \%$ that of the Crab nebula.

Discovery of the Pulsar

~5 months of data

- We discovered a 106.6 ms pulsar in a blind period search of LAT data.
- 19,000 year spin-down age
- 3.1×10^{12} gauss
- $2.8 \times 10^{36} \mathrm{ergs} \mathrm{s}^{-1}$
- best fit location of
$\mathrm{RA}=286.965, \mathrm{DEC}=6.022$

Localization

- Improved analysis techniques allow us to fit for position when timing the pulsar.
- This gives a very accurate position determination down to few arcsecond accuracy.
- This is crucial for multi wavelength followup observations.

Radio Detection

Using the LAT timing position and ephemeris

- Very faint radio pulsations detected at 1.5 GHz with Arecibo (Paulo Freire)
- Flux density of 3.4 uJy
- DM distance of 3.2 kpc
- Extremely low radio luminosity, but not the lowest ever :
- Pseudo-luminosity of $0.035 \mathrm{mJy} \mathrm{kpc}{ }^{2}$. Smaller than the least luminous young pulsar ($<100,000 \mathrm{yrs}$) in the ATNF catalog (PSR J0205+6449 with $0.46 \mathrm{mJy} \mathrm{kpc}^{2}$ at 1.4 GHz)
- More luminous than PSRJ1741-2054 (0.025 mJy) first discovered by Fermi and later found in deep radio searches.
- Gamma rays:
- Two distinct peaks with

$$
\Delta=0.36
$$

- Pulsations detected at $\mathrm{E}>5 \mathrm{GeV}$
- No significant evolution in shape of P1/P2 with energy
- Radio lead $\delta=0.22$ and Δ are in good agreement with the correlation predicted for outer magnetosphere models.

Fermi LAT Counts Map

Complex and busy region of the Galaxy that must be treated with care in the spectral analysis

Spectral Energy Distribution

- LAT upper limits on emission from the TeV PWN requires a turnover between 20 and 300 GeV .
- We constrain the overall $\mathrm{GeV}-\mathrm{TeV}$ PWN flux to be $<25 \%$ that of the pulsed flux.
- Very efficient in generating pulsed gamma-rays (13\%).

Power law with exponential cutoff

$$
\Gamma=1.76 \pm 0.05_{\text {stat. }}+\left({ }_{-0.287}^{+0.271}\right)_{s y s .} \quad E_{c}=3.6 \pm 0.5_{\text {stat. }}+\left({ }_{-0.36}^{+0.72}\right)_{\text {sys. }} \mathrm{GeV}
$$

Chandra X-Ray Counterpart

- 19 ksec exposure
- No flux $<1 \mathrm{keV}$ and significant flux $>2 \mathrm{keV}$
- Fermi LAT timing position
- Chandra source CXOU J190754.7+060214
- Non-thermal emission mechanism
- Hint of spatial extent for harder emission.
- Very low X-ray flux suggests DM distance is not an overestimate.

Birthplace of the Pulsar

- The bulk of the TeV PWN is between SNR G40.5-0.5 and the pulsar.
- Age and distance estimates of the SNR are in agreement with those of the pulsar.
- Distance between G40.5-0.5 and PSRJ 1907+0602 is 28 pc
- At 3.2 kpc , this requires a $1400 \mathrm{~km} /$ s transverse velocity for the pulsar.
- Any associated X-ray or radio PWN should have a bow-shock and a trail pointing back to the SNR.
- Lower velocities would be required if the pulsar was born at the center of the TeV PWN.

Summary

- PSR J1907+0602:
- A very faint radio pulsar.
- Very efficient in generating pulsed gamma-rays.
- X-ray counterpart: CXOU J190754.7+060214
- The TeV source is plausibly the wind nebula of PSR J1907+0602.
- The derived timing position of PSR J1907+0602 is well inside the extended TeV source.
- The energetics work out. Pulsar can power the PWN:
- Overall $\mathrm{GeV}-\mathrm{TeV}$ PWN flux is $<=25 \%$ of the pulsed flux.
- LAT U.L. suggest PWN spectrum to have a low energy turnover between 20 and 300 GeV .
- This nebula is more luminous than the Crab at 20 TeV .
- See talk by Michael Dormody on PSR J1022-5746 , another Fermi blind search pulsar that seems to be powering a TeV source

Aous Abdo - Fermi LAT
Fermi Symposium 2009, Washington, DC

