Pulsar contribution to electron/positron cosmic rays

Dmitry Malyshev CCPP, NYU

together with Ilias Cholis & Joseph Gelfand

arXiv:0903.1310 PRD80:063005(2009)

Fermi Symposium '09

Anomalous flux: $F \sim F_0 E^{-n} e^{-\frac{E}{E_{br}}}$ $n \sim 2.0 - 2.5$ $E_{br} \sim 100 \text{ GeV} - 1 \text{ TeV}$

Backgrounds:

Primary $\sim E^{-3.3}$

Secondary $\sim E^{-3.6}$

Propagation

Energy loss: $\dot{E} = b_0 E^2$ Characteristic cooling time: $t = \frac{1}{b_0 E}$ For E < 1 TeV the time t > 100 kyr **Diffusion:** $D(E) = D_0 E^{\delta}$ (Moscalenko & Strong) Characteristic diffusion distnace: $x^2 \sim D(E)t$ For E > 100 GeV the distance x < 2 kpc

Emission 1

Magnetic dipole radiation: $\dot{\mathcal{E}} = \frac{\mathcal{E}_0}{\tau} \left(1 + \frac{t}{\tau}\right)^{-2}$ Pulsar time scale: $\tau < 10 \, \rm kyr$ Crab: $\tau \approx 0.7 \,\mathrm{kyr}$ $\mathcal{E}_0 \approx 5 \times 10^{49} \mathrm{erg}$ After escaping the magnetosphere the electrons are trapped for some time in Pulsar Wind Nebula. The lifetime of PWNe << 100 kyr. For the purposes of e^+e^- observations $\dot{\mathcal{E}} = \mathcal{E}_0 \, \delta(t)$

Emission 2

From PWNe synchrotron and Gamma rays:

$$Q \sim \eta \mathcal{E}_0 E^{-n_0} e^{-E/E_{\rm br}} \delta(t)$$

Initial energy: $\mathcal{E}_0 = 10^{48} - 10^{50} \mathrm{erg}$ $(P = 0.02 - 0.2 \mathrm{s})$ Conversion efficiency: $\eta \approx 0.01 - 0.1$ Index: $n_0 \approx 1.0 - 2.0$ (D.A.Green SNR catalog)Break: $E_{\rm br} \approx 100 \mathrm{GeV} - 10 \mathrm{TeV}$

Problems

1. PWN lifetime << propagation time:

The electrons from observed PWNe cannot reach us. The electrons that reach us come from PWNe that can no longer be observed.

2. Degeneracy:

Thus there are at least 6 unconstrained parameters (single pulsar and ISM) to describe 3 parameters of the anomalous flux.

For instance, the propagated index of the flux from a disc-like source is

$$n = n_0 + \frac{1+\delta}{2}$$

What we can do?

Use currently observed PWNe to find the distribution of properties
Calculate typical spectra
Constrain the parameters of ISM & pulsars
We will start by comparing the flux from ATNF pulsars and a continuous distribution

of pulsars.

Flux from ATNF pulsars versus continuous disc source

n = 1.5 $\eta = 0.065$ $\tau = 1 \text{ kyr}$

The cutoff is determined by the cooling break from the youngest pulsar within the Earth's diffusion zone.

Fitting the continuous flux to the ATNF pulsars requires the pulsar birth rate $N_b = 1.8 \text{ kyr}^{-1}$

5

2

10

20

50

E (GeV)

100

The flux from ATNF pulsars versus Fermi and PAMELA

 $n_0 = 1.5$ $\delta = 0.4$ $\eta = 0.065$ $\tau = 1 \, \mathrm{kyr}$

The initial rotational energy for every pulsar is

 $\mathcal{E}_0 = \dot{\mathcal{E}}$

where

Ė

200

500

 current spin-down $\frac{P}{2\dot{P}}$ - characteristic pulsar age

The crosses and the areas correspond to the best fits of continuous disc distribution to Fermi and PAMELA data. The best fit parameters are: $\delta \approx 0.50 \pm 0.05$ $n_0 \approx 1.6 \pm 0.2$

 $\eta \mathcal{E}_0 \sim 5 \times 10^{48} \,\mathrm{erg}$

Conclusions

1. It is possible to fit both Fermi and PAMELA with reasonable ISM and pulsar parameters 2. Assuming the pulsar origin of electron/ positron fluxes, Fermi&PAMELA can constrain some propagation and pulsar parameters 3. It is impossible to "derive" the flux from the observed properties of pulsars: the corresponding PWNe have disappeared