

THE SEARCH OF AXION-LIKE-PARTICLES WITH FERMI AND CHERENKOV TELESCOPES

Miguel A. Sánchez Conde

(Instituto de Astrofísica de Andalucía - CSIC)

In collaboration with: D. Paneque, E. Bloom, F. Prada and A. Domínguez

[PHYSICAL REVIEW D 79, 123511 (2009)]

"2009 Fermi Symposium" – Hyatt Regency Washington, Washington DC, November 2 – 5, 2009

Photon/axion oscillations

- Axions were postulated to solve the strong CP problem in the 70s.
- Good Dark Matter candidates (axions with masses \approx meV-µeV could account for the total Dark Matter content).
- They are expected to oscillate into photons (and viceversa) in the presence of magnetic fields:

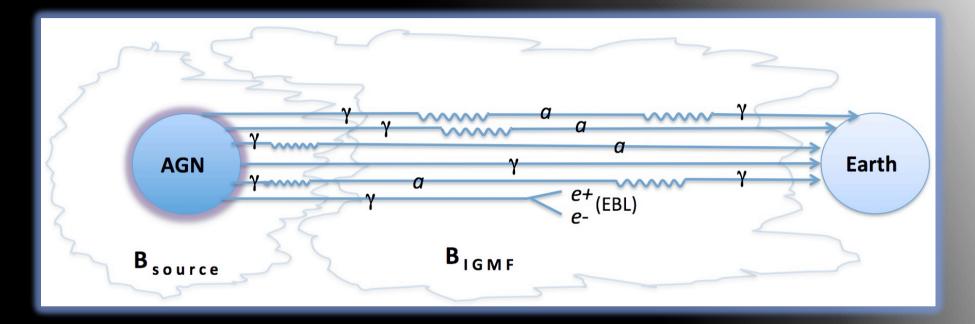
with

$$P_0 = (\Delta_B s)^2 \frac{\sin^2(\Delta_{\rm osc} s/2)}{(\Delta_{\rm osc} s/2)^2}.$$

$$\Delta_B = \frac{B_t}{2M} \simeq 1.7 \times 10^{-21} M_{11} B_{\rm mG} \ \rm cm^{-1}$$
$$\Delta_{\rm osc}^2 \simeq (\Delta_{\rm CM} + \Delta_{\rm pl} - \Delta_a)^2 + 4\Delta_{B}^2,$$

Photon/axion oscillations are the main vehicle used at present in axion searches (ADMX, CAST...).

Some astrophysical environments fulfill the mixing requirements

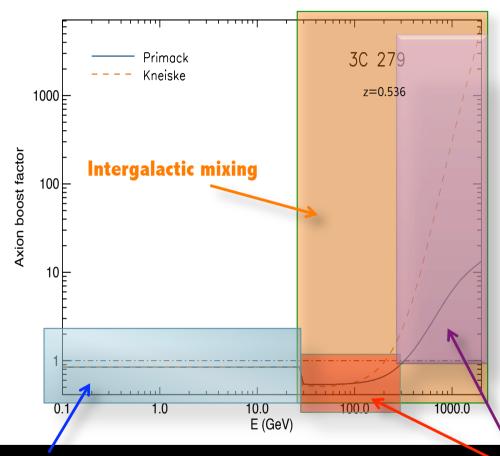

AGNs, IGMFs

$$\frac{15 \cdot B_G \cdot s_{pc}}{M_{11}} \ge 1$$

$$M_{11} \ge 0.114 \text{ GeV} \text{ (CAST limit)}$$

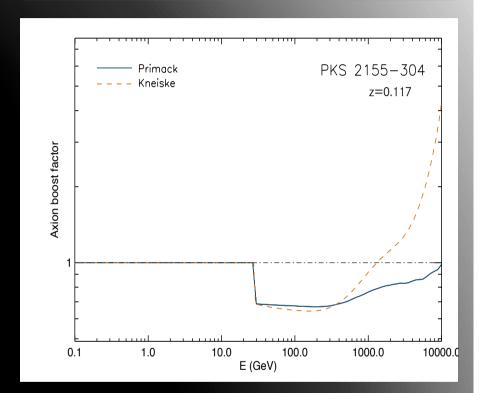
$$\begin{split} M_{11}: & \text{coupling constant inverse} \\ & (g_{\alpha\gamma}/10^{11}\,\text{GeV}) \\ B_{\text{G}}: & \text{magnetic field (G)} \\ s_{\text{pc}}: & \text{size region (pc)} \end{split}$$

Source and intergalactic mixing working together


AGNs located at cosmological distances will be affected by both mixing in the source and in the IGMF:

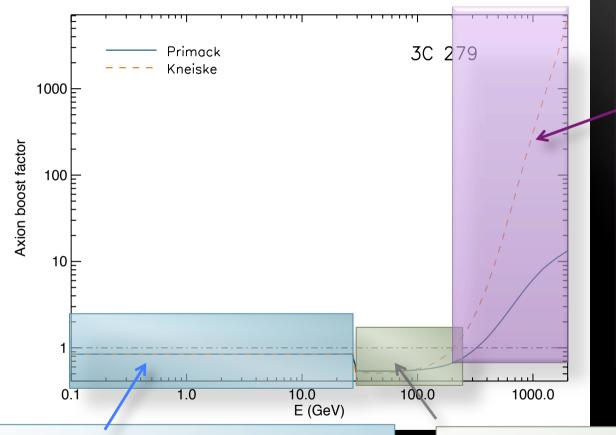
- A. Source mixing: attenuation
- B. IGM mixing: attenuation and/or enhancement

In order to observe both effects in the gamma-ray band, we need ultralight axions.


$$E_{crit}(GeV) \equiv \frac{m_{\mu eV}^2 \ M_{11}}{0.4 \ B_G}$$

Axion boosts

Attenuation due to source mixing


Axion boost =(Flux w axions) / (Flux w/o axions)

Enhancement due to intergalactic mixing Attenuation due to intergalactic mixing

- ✓ Larger axion boosts for distant sources.
- \checkmark The more attenuating the EBL, the larger the axion boosts.

Observational strategy with Fermi and IACTs

IACTs observations

Look for systematic intensity enhancements at energies where the EBL is important.

Distant (z > 0.2) sources at the highest possible energies (>1 TeV), to push EBL models to the extreme.

Source and EBL model dependent, but very important enhancement expected in some cases.

Fermi/LAT and/or IACTs

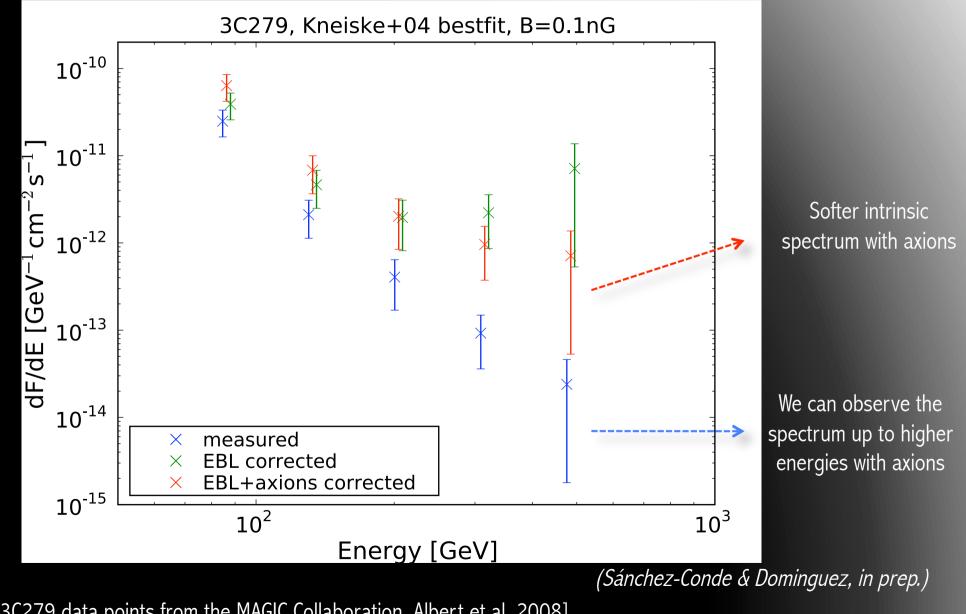
Look for intensity **drops** in the residuals ("best-model"-data).

Source model dependent.

Powerful, relatively near AGNs.

Fermi/LAT and/or IACTs

Look for intensity **drops** in the residuals.


Only depends on the IGMF and axion properties (mass and coupling constant).

Independent of the sources -> CLEAR signature!

Are we detecting axions already?

- Recent gamma observations might already pose substantial challenges to the conventional models to explain the observed source spectra and/or EBL density.
 - The VERITAS Collaboration recently claimed a detection above 0.1 TeV coming from 3C66A (z=0.444). EBL-corrected spectrum harder than 1.5 (Acciari+09).
 - TeV photons coming from 3C 66A? (Neshpor+98; Stepanyan+02). Difficult to explain with conventional EBL models and physics.
 - The lower limit on the EBL at 3.6 μm was recently revised upwards by a factor ~2, suggesting a more opaque universe (Levenson+08).
 - Some sources at z = 0.1 0.2 seem to have harder intrinsic energy spectra than previously anticipated (Krennrich+08).
- While it is still possible to explain the above points with conventional physics, the axion/ photon oscillation would naturally explain these puzzles:
 - More high energy photons than expected.
 - Softer intrinsic spectrum when including axions.

Axions are our friends

[3C279 data points from the MAGIC Collaboration, Albert et al. 2008]

CONCLUSIONS

- If axions exist, they could **distort the spectra** of astrophysical sources importantly.
- If photon/axion mixing in the IGMFs, then also mixing in the source. For $m_{axion} \approx 10^{-10} \text{ eV} \rightarrow \text{gamma}$ ray energy range.
- Photon/axion mixing in both the source and the IGM are expected to be at work over several decades in energy -> joint effort of Fermi and current IACTs needed.
 - Fermi/LAT instrument expected to play a key role, since it will detect thousands of AGNs (up to z~5), at energies where the EBL is not important.
 - IACTs specially important at higher energies (>300 GeV), where the EBL is present.
- Main caveats: the effect of photon/axion oscillations could be attributed to conventional physics in the source and/or propagation of the gamma-rays towards the Earth.
- However, detailed observations of AGNs at different redshifts and different flaring states could be used to identify the signature of an effective photon/axion mixing.