Searching for Radio Pulsars in Unidentified Fermi-LAT Bright Sources

Scott Ransom (NRAO) For the Fermi Pulsar Search

Consortium (PSC)

Fermi Bright Source List

- 205 sources after 3 months at >10σ
- Many with associations
- Many new pulsars
- Many without associations might be new pulsars
- Blind searching in γrays is getting much harder...

Abdo et al, 2009, ApJS, 183, 46

Why search for pulsars?

- Radio and γ-rays come from different parts of magnetosphere
 - Constrain emission
 - See work by Romani, Harding, Gonthier, etc
- Dispersion Measure gives a distance
- Radio timing typically much more accurate
- Some pulsars we can't find in γ-rays

Searches for γ-ray PSRs in EGRET srcs were not very successful. Exceptions: PSR J2229+6114 (Halpern et al 2001) PSR J2021+3651 (Roberts et al 2002)

Which BSL Sources?

- Chose 27 sources:
 - No associations
 - Not flagged as variable
 - Not already deeply searched in radio
 - Dec > -40deg
 - 8 sources at high galactic latitude
- 30 hrs of GBT time
 - Used 9-month posns
 - Obs finished 2 wks ago

95% conf. regions wellmatched to 820MHz GBT beam, 15' in diameter

Observations and Data Analysis

- Each src obs ~1 hour
 - GBT+GUPPI @ 820MHz
 - 2048 freq channels
 - 61µs sampling
 - 200MHz of bandwidth
 - ~110 GB / src
 - ~3 TB total
- Compute Intensive

- Search over Dispersion Measure, frequency, and potential orbital (linear) acceleration
- Requires ~2 days on 50 CPUs per source

• 9 sources have been searched fully

- 9 sources have been searched fully
- 5 of them are in the Galactic plane and nothing was seen

- 9 sources have been searched fully
- 5 of them are in the Galactic plane and nothing was seen
- 4 are high-Galactic latitude sources..
 - 0FGL J1311.9-3419 had nothing

- 9 sources have been searched fully
- 5 of them are in the Galactic plane and nothing was seen
- 4 are high-Galactic latitude sources..
 - 0FGL J1311.9-3419 had nothing
 - OFGLs J2214.8+3002, J1231.5-1410, and J0614.3-3330 each have bright binary millisecond pulsars!

0FGL J2214.8+3002 is PSR J2214+30

3.12 ms spin 10 hr orbit 13 Mjup min companion ~1.5 kpc (DM) X-ray point sources... Very bright Scintillation Arecibo visible!

"Black-Widow", NANOGrav MSP?

0FGL J2214.8+3002 is PSR J2214+30

3.12 ms spin 10 hr orbit 13 Mjup min companion ~1.5 kpc (DM) X-ray point sources... Very bright Scintillation Arecibo visible!

0FGL J1231.5-1410 is PSR J1231-14

3.68 ms spin 1.86 day orbit 0.2 Msun min companion ~400 pc (DM) Good X-ray point source... (thanks to Michael Wolff)

"Normal" Binary MSP (and close)

0FGL J1231.5-1410 is PSR J1231-14

3.68 ms spin 1.86 day orbit 0.2 Msun min companion ~400 pc (DM) Good X-ray point source... (thanks to Michael Wolff)

XMM-Newton (MOS)

0FGL J0614.3-3330 is PSR J0614-33

3.15 ms spin unknown orbit ~2 kpc (DM) X-ray point sources... Very bright Scintillation

Unknown Binary MSP

0FGL J0614.3-3330 is PSR J0614-33

3.15 ms spin unknown orbit ~2 kpc (DM) X-ray point sources... Very bright Scintillation

Swift XRT

Conclusions

- 3 out of 4 high-Galactic latitude sources searched so far have bright radio MSPs!
- No γ-ray pulsations yet...(timing required)
- A new way to find such valuable systems:
 - Basic physics tests (e.g. NS EoS)
 - Gravitational wave detection (e.g. *NANOGrav*)
- Still 18 more sources to search (4 high-lat)
- Many more in Mallory Robert's 350MHz survey and other searches at Parkes, Arecibo and Effelsberg
- γ-ray and radio luminosities of MSPs uncorrelated(?)
- γ-ray and radio both likely have wide fan-beams