

The Fermi-LAT measurement of the primary cosmic ray electron spectrum between 7 GeV and 1 TeV

Luca Latronico INFN-Pisa (<u>luca.latronico@pi.infn.it</u>) on behalf of the Fermi-LAT Collaboration

Fermi Symposium 2-5 November 2009 Washington DC

The Fermi CRE Spectrum in May 2009

Measurement 20 GeV – 1 TeV

- hard (~ E⁻³)
- flat (no spectral features)
- cutoff above ~1 TeV (HESS)
- Observational consequences
 - Pure diffusive models
 - pre-Fermi too soft
- iffusive models pre-Fermi too soft proper choice of model params fit data (CE) – proper choice of
 - source stochasticity can explain hardness
 - Models with additional local electron source
 - Many fit data well
 - Local component nature is astrophysical or Dark Matter

LAT electron detection capabilities

- □ Huge electron statistics (~8M/yr)
 - Large area, high duty cycle
- □ 3 powerful detectors (ACD, TKR, CAL)
 - All contribute to electron ID by sampling EM vs hadron shower development
- Very accurate MonteCarlo instrument simulation
 - Performance metrics, event selection, residual contamination
- Validations with flight and ground data
 - Energy reconstruction
 - MC simulation

- > ACD: large energy deposit per tile
- TKR: small number of extra clusters around main track, large number of clusters away from the track
- > CAL: large shower size, low probability of good energy reconstruction

- > ACD: few hits in conjunction with track
- TKR: single clean track, extra clusters around main track clusters (preshower)
- CAL: clean EM shower not fully contained in CAL

Energy resolution checks – High X0 events

□ Critical for high energies

- Shower leakage from CAL
- Select subsample of events with long path-length (HI-X0)

- X0>13

- 12 in CAL + minimum track length in TKR + events contained in a single CAL module
- ↑ Energy resolution X ~ 2 4
 - Down to 5% at 1 TeV (68% containment half-width)
- Instrument acceptance to ~ 5% of standard and limited to a specific portion of instrument phase space
 - Much higher systematics

Comparison of standard and High-X0 spectra

Consistent within their own systematics

already demonstrated by simulation of LAT response to spectral features with artificially worsened resolution

→ the LAT energy resolution is adequate to detect prominent spectral features

→ the Fermi spectrum is NOT dependent on the energy resolution of the bulk of the events

Extension to low energy measurements

 Determine geomagnetic cutoff energy as a function of geomagnetic orbital coordinates

Gamma-ray Space Telescope

- Higher McIlwainL, lower cutoff energy
- Measure spectrum for primary component above cutoff
- Recombine spectra into global spectrum

see M. Pesce-Rollins poster P4 – 124

Extended Energy Range (7 GeV – 1 TeV) – One year statistics (8M evts)

Possible interpretations

Two-component scenario

- Modified background (primary electron index at source $\gamma 0 = -2.70$)
- Additional local component (index = -1.5; E_{cut} = 1.0 TeV)
- Fits Pamela data too
- Revised diffusion model
 - compliant with gamma-ray data (Fermi) and other CR measurements
 - Modifications to standard diffusion and propagation processes
 - Modifications to solar modulation effects

see D. Grasso poster P4 - 237

- Fermi CRE measurement extended down to 7 GeV and to 1 year statistics
- Event selection checks with long path-length requests indicate no dependence of the measured spectrum on energy resolution
- □ Spectrum adds valuable information below 10 GeV where strong constraints to propagation models can be imposed
- □ Several possible interpretations
 - Revised diffusion model
 - Extra component, astrophysical or Dark Matter
- **Given States Further work**
 - extend energy above 1 TeV to find TeV spectral cut-off
 - Reduce systematics to constrain different components in the overall spectrum
 - Search for anisotropies (see poster P4 121 Vasileiou & Mazziotta)