

Observations of the Microquasar Cygnus X-3 by Fermi LAT

Stéphane Corbel

(University Paris Diderot / CEA Saclay / Institut Universitaire de France)

R. Corbet, G. Dubus, M. Kerr E. Koerding

on behalf of the Fermi LAT collaboration

Paper submitted (embargo on all results)

Cygnus X-3

- High Mass X-ray Binary with a Wolf Rayet companion star, short orbital period (4.8 hours), distance ~ 7 kpc
- Compact object is probably a black hole but may be a neutron star
- Frequent radio outbursts associated with relativistic jets resolved in radio: microquasar
- **Quantity Quantity Quantity**
- AGILE report detection of a transient source in Cygnus region
- What can Fermi-LAT say about this ?

The Cygnus region

- A crowded and complex field with strong diffuse emission and 3 bright pulsars, incl. PSR J2032+4127 (cross) only 30' from Cyg X-3 (circle)
 - Turning off the pulsar by selecting the LAT photons by phase: keep 80% of LAT exposure

The Cygnus region

- No off-pulse detection of PSRJ2032+4127
- A bright source at the location of Cyg X-3: ~ 29 σ
- Average flux (>100 MeV): 1.19 +/-0.06 (sta) +/- 0.37 (sys) 10⁻⁶ ph s⁻¹ cm⁻²
- Soft spectrum: PL index: 2.70 +/-0.05 (stat) + 0.20 (syst)

Fermi light-curve of the LAT source

- Active phases seem consistent with one or several flares
- Peak flux can be as high as 2 x10⁻⁶ ph s⁻¹ cm⁻², corresponds to Gamma-ray luminosity $L\gamma \sim 5 \times 10^{36} (d / 7 \text{ kpc})^2 \text{ erg s}^{-1}$

Orbital period search

- Gyg X-3 orbital period = 4.8 hours (red arrows)
- Data points weighted by their exposure
- No significant orbital modulation in the entire dataset
- Significant detection of Cyg X-3 orbital period in the two active periods (probability of a false detection ~2 10-9)
- Identification of the LAT source with Cyg X-3!!

Folded light-curves of Cyg X-3

- RXTE/ASM and LAT: same asymmetric shape: slow rise followed by a faster decay
- LAT data: consistent with a 100 % modulation
- ASM Conut Rate (cts s 15 10 1.5 2.0

Orbital Phase

Important: the LAT maximum is shifted by 0.3 to 0.4 in phase from X-ray maximum

LAT detection of Cyg X-3 in the soft state

- Connection to the ultra-soft state associated with relativistic ejections

Relativistic jets

The LAT active periods of Cyg X-3 occur close to radio (AMI + OVRO) flares

Time (MJD -54000)

- Positive correlation as indicated by the discrete crosscorrelation function

Origin of the modulation

- but within system: Modulation due to inverse Compton (IC) scattering on UV photons. More IC at superior conjunction (head-on collisions)
- **②** Consistent with X-ray minima and phasing of orbit (Hanson et al. 00)
- e- in corona (= base of jets?). Extension of hard X-ray power-law to 100
 MeV consistent with Fermi (but steepening).

Conclusions

- Detection of a LAT source positionally consistent with Cyg X-3
- Identification with Cyg X-3 secured by the detection of its orbital period. First detection of a microquasar at high energy
- Variability in gamma-rays: associated with the soft X-ray state and also with periods of relativistic ejection events. Clear link with relativistic jets ejection events.
- Gamma-ray emission = inverse Compton of stellar photons on electrons in corona (=base of jets ?)
- Maximum gamma-ray modulation when X-ray ~ minimum : consistent with IC emission at superior conjunction.
- WR wind + compact binary -> huge density -> hadronic interactions ? Cosmic rays protons in microquasars ?