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GRB Formation

Newly-formed
short-lived magnetar?

Binary Neutron Star Merger ' Internal Shocks? External Shocks

Jet collides with
ambient medium
(external shock wave)

rrrrrrrr
Colliding shells emit gamma rays
(internal shock wave model)
JV* High-eneray
gamma rays

SN

X-rays

Visible light

Massive Star Collapse

Black hole
low-energy (< 0.1 GeV) to

engine high-eneray (to 100 GeV)
Pfompf gamma rays
emission
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Broadband Observations of GRBs

GRB Afterglow Synchrotron Spectra

“Typical” GRB Light Curve
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log1o luminosity (erg/sec)

BNS Merger Counterparts

time since merger (days)
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10 1073 102 10! 10° 10! 102 10°

kilonova

afterglow
non-thermal, beamed radioactive, thermal relativistic
46 isotropic non-thermal
y-rays
On.
44 A e Gamma-ray burst (GRB) and
. %%/OW —_— On-Axis Afte.rgl.ow: Relativistic
I fianed jet viewed within cone
a0 uv ’\ e Kilonova: Radioactive glow
from heavy elements, isotropic
38 / e Off-Axis Afterglow: Relativistic
jet viewed after lateral
- radio \ spreading
e Panchromatic phenomenon
. 107 10° 10! 102 10° 10° 10° 10° 10 10° with a variety of time scales

time since merger (seconds) Credit: D. Kasen, NASA GW-EM Task Force

Borrowed from NASA GW-EM Task Force Report - https://pcos.gsfc.nasa.gov/gw-em-taskforce/gw-em-taskforce.php



What have you already learned about binary
neutron star mergers?

. . A Day in the Life of a BNS Merger .
Neutron star binaries and ! & From Cori’s talk:
gravitational waves * GRB 170817A
observational
= ZAMS ﬁ
How do neutron stars form binary - O CE Seq ue nce’
systems*? me O Vs properties
| .l. He-star
*that collide in a time less than He-star .l o g cosess e Lots of other
. A S5 mo
the age of the universe? N /2?1\2 o Q . great stuff!
Note: we already know 10 such o - 'Aj/?i— e
systetpsin o0t gy P N GRB 170817A Properties
Question: HVXB e (==, DNs
! What could go | o ™
: wrong in this : L e H ,
a e From Josh’s talk:
BB  analysis tutorial
From Cecilia’s Talk, also: of GRB 170817A ——
* rates of BNS, 2 GW detections so far T R R
* BNS rates
* NSEOS

Not very energetic but close by

* Hubble Constant
* Lots of other great stuff!



Did our understanding of binary neutron star
mergers start with GW 1708177

NO




What did we know a

?

before GW detectior

* GRBs can be separated into 2 distributions in T90, even

better including hardness ratio

* Short GRBs are shorter and harder than long GRBs

* Overlap in distributions, but reason

* Lots of studies looking for a 3" intermediate population,

some claims, but they look like like

able separation

long bursts
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BNS Mergers produce sGRBS — Predictions tested

LETTERS TO NATURE

Nucleosynthesis, neutrino bursts
and +y-rays from coalescing
neutron stars

David Eichler*, Mario Liviot, Tsvi Pirant
& David N. Schramm$§

* Department of Physics, Ben Gurion University, Beer Sheva, Israel, and
Astronomy Program, University of Maryland, College Park,

Maryland 20742, USA

T Department of Physics, The Technion, Haifa, Israel

% Racah Institute for Physics, Hebrew University, Jerusalem, Israel, and
Princeton University Observatory, Princeton, New Jersey 08544, USA

§ Departments of Physics and Astrophysics, University of Chicago,
5640 Ellis Avenue, Chicago, lllinois 60637, USA,

and NASA/Fermilab Astrophysics Center, Batavia,

lllinois 60510, USA

Eichler et al. 1989

NEUTRON-STAR collisions occur inevitably when binary neutron
stars spiral into each other as a result of damping of gravitational
radiation. Such collisions will produce a characteristic burst of
gravitational radiation, which may be the most promising source
of a detectable signal for proposed gravity-wave detectors'. Such
signals are sufficiently unique and robust for them to have been
proposed as 2 means of determining the Hubble constant®.
However, the rate of these neutron-star collisions is highly uncer-
tain®. Here we note that such events should also synthesize neutron-
rich heavy elements, thought to be formed by rapid neutron capture
(the r-process)’. Furthermore, these collisions should produce
neutrino bursts® and resultant bursts of y-rays; the latter should
comprise a subclass of observable y-ray bursts. We argue that
observed r-process abundances and y-ray-burst rates predict rates
for these collisions that are both significant and consistent with
other estimates.

o

This scenario makes two simple observational predictions.
First, assuming that ~10° galaxies are within 100 Mpc and that
the bursts are indeed detectable out to that distance, then an
occurrence of ~107* per galaxy per year yields a detection rate
of 10 per year. With the oriented scintillation spectrometer
experiment on the Gamma Ray Observatory, it will be relatively
straightforward to distinguish featureless, highly thermal y-ray
bursts from others. Should such a class be identified, we suggest
that it would be worthwhile to check for identifications of such
bursts with galaxies. Second, gravitational-radiation events of
this nature should be detectable with a 30c signal up to a
distance of 100 Mpc and with a 3o signal up to a distance of
1,000 Mpc by the proposed Caltech-MIT Gravitational Wave
Detector?. The rate of stronger events should be comparable to
that of y-ray bursts of this kind, and the coincidence of such
y-ray bursts with gravity waves may in fact provide the most
stringent observational test of the scenario. Verification would
imply that our model identifies the site of the astrophysical
r-process. ]



sGRBs live in old stellar populations

First afterglows of a sGRBs just outside
elliptical galaxies with low star formation
rates

Gehrels et al. 2005

Magellan/PANIC
2005 July 25.01

2005 July 27.15

Residual

19.8 kpc
5Il

Berger et al. 2005

GRB 050724



sGRBs have afterglows and wider jets
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Host Galaxies and Environments

* mass, stellar population
age, specific star
formation rate and
metallicity are
significant different
between the hosts of
short and long GRBs

* short GRBs are
associated with a mixed
population of early and
late-type host galaxies

D’Avanzo et al. 2015
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SN/KN Bumps Identify Progenitor Type

late-time bump in optional/IR late-time bump in optional/IR
afterglow light curves consistent afterglow light curves consistent
with broadline SN Ic -> Collapsar with KNe -> BNS merger
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What was actually new with 1708177

* GW provided

 precise time of merger (and delay between merger and GRB of 1.7 s, used e.g. speed
of gravity)

* NS progenitor masses, and final mass
* independent measure of distance (used e.g. for hubble constant)

e kilonova

 precise localization (and every telescope on earth pointed at it) provided amazing
dataset of evolving kilonova

* off-axis afterglow
* extremely nearby distance allowed for detection of off-axis afterglow

* GRB appeared relatively normal and boring, except it’s very nearby



GRB 170817A and it’s
counterpart GW 170817/

* Distance of 40 Mpc (z=0.01)

 GRB 1.7s after GW merger
signal

* GRB was extremely sub-
luminous

* It was viewed slightly off axis
* We got really really lucky

Event rate (counts/s)  Event rate (counts/s)

Event rate (counts/s)

Frequency (Hz)

Abbott et al. 2017 Mot B
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GRB 170817A Spectral Components

* Typical short (~0.5 s) hard spike

* a=-0.62+0.40

* Epeax = 185 £ 62 keV

e Longer (™1 s) soft thermal tail
e kT=10.3 £ 1.5 keV
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GRB 1/7/0817/A Properties
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GW170817
several orders
of magnitude

weaker than
other GRBs
when
accounting for
distance
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LA

* LAT was not taking data at merger
time (SAA)

e Upper limit from first observation
perhaps in realm of detections of
other LAT short GRBs

e LAT & GBM both shrinking SAA
polygons

Observations of GW170817/GRB 170817A
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How do we identify BNS mergers in GRBs?

e Hardness and
duration, right?

* long-short burst
* short-long bursts

* sGRBs with soft
component

Flux density (uJy)

Long GRB with a KN
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Tgp=43s
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GRB 1501018 - A Cousin ot GW1708177

* The third closest SGRB with known redshift - GRB 150101B
* Very hard initial pulse with Epeak =1280+590 keV followed by a soft thermal tail

with kT~10 keV

e Unlike GRB 170817, 150101B was not under luminous and can be modeled as on-

axis

e Suggests that the soft tail is common, but generally undetectable in more distant

events

* Thermal tail can be explained as GRB photosphere, but degeneracy with the

cocoon model still exists

125001  50-300 keV
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Count Rates

See also Troja et al.
2018 on GRB 1501018,

GRB 150101B
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What have we learned and could learn with
more GW-GRBs? o

* sub-energetic population of nearby
SGRBs

* |s the intrinsic population not normally

Gaussian
Power Law
Aloy 2005
Mizuta 2009
Duffell 2013
Lazzati 2017
Margutti 2018
Geng 2019

100 E

Eiso(0) (arbitrary units)

accessible or viewing angle geometry? 1071 5
* jet structure
« How does that affect visibility? 1077 5
* progenitor and remnant objects
* How do the binary component masses U 0 = 10 15 20 95 30
and mass ratio affect the final merged 0 (degrees)

iact?
object: Ryan et al. 2020



Jet Structure

 evidence for off-axis
viewing
* GW parameterization
* low-luminosity GRB
* rising X-ray/radio
afterglow + afterglow
modeling

* Population of good
observations of GW
detections of BNS can
constrain jet
structure models

Maximum Luminosity Distance (Mpc)
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Afterglow evolution is
subject to both
viewing geometry and
jet geometry

Oobs,O < aobs < 60bs,25

00bs,25 < eobs < 00bs,50
90bs,50 < eobs < 90bs,75
90bs,75 < eobs < 00bs,100
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Ryan et al. 2020
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Progenitor Objects

Good observations of
GW, GRB, KN, afterglow
can constrain the
merger remnant and
properties of the binary
system

Burns et al. 2020 (originally from Nimble
proposal)

System BNS increasing Mass 3 NSBH
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Neutrinos and GRBs

* GRB jets accelerate non-thermal protons,
which are expected to produce high-
energy neutrinos via photohadronlc

interactions.

e See Kimura et al.
2022 for a

comprehensive ¢
review

Prompt

NS-NS mergers
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What’s next?

* Watershed GRB 170817A taught us a lot about BNS mergers and all of its
counterparts (GW, GRB prompt, KN, GRB afterglow)

* The future will likely bring more events, but not nearly as close and
exquisitely observable as 170817. We need to learn from those too.

* We need GRB monitors to provide measures of prompt temporal and
spectral properties, delay time from merger, confirmation of signal/type,
and localizations, and broadband afterglow observations.

* In addition to GBM, many more small GRB detectors coming (e.g.
BurstCube, Glowbug, StarBurst, BlackCat, ...), and many others proposed



