

Time-dependent multi-zone modelling of pulsar wind nebulae

Carlo van Rensburg

Supervisors: Paulus Kruger Christo Venter

Overview

Noteworthy background.

Problems with current models and motivation for our study.

Spectral Energy Density (SED) Model.

Calibration of Model.

Spatial results.

Conclusions and future work.

PWN Characteristics

- Called a Plerion "filled bag".
- Structured magnetic field.
- Hard radio spectrum.
- Particle re-acceleration at termination shock.
- 2 Component injection spectrum.

VHE Characteristics

- σ (magnetisation parameter) is small.
- Thus particle dominated, opposite than the magnetosphere of a pulsar.
- Magnetic field of PWN is very small in early epochs due to rapid expansion of the PWN.

Motivation (I)

- No correlation between PWN TeV flux and the E or the characteristic age of pulsar.
- X-ray emission correlated with pulsar E and anti-correlated with characteristic age.
- Is there any correlation between TeV surface brightness and E?

Motivation (II)

- Multi-wavelength morphological data becoming available
- CTA: Improved angular resolution
- Spatially-dependent PWN model needed
 - > Size vs. Energy
 - \succ Constrain B(r), k(r), and V(r) profiles

Research goal

- Main aim Creating a time-dependent, multi-zone model of a PWN
- To yield spatial morphology of a PWN.

Model

Van Rensburg, Krüger & Venter, in prep.

Pulsar Wind Nebulae (PWNe)

17 Transport Equation (I)

Momentum space:

$$\begin{split} \frac{\partial f}{\partial t} &= -\nabla \cdot \mathbf{S} + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 \left\langle \dot{p} \right\rangle_{\mathrm{tot}} f \right) + Q(\mathbf{r}, p, t), \\ \nabla \cdot \mathbf{S} &= \nabla \cdot (\mathbf{V} f - \underline{\mathbf{K}} \nabla f) \end{split} \quad \text{See Parker (1965)}$$

Energy space:

$$\frac{\partial N_{\rm e}}{\partial t} = -\mathbf{V} \cdot (\nabla N_{\rm e}) + \kappa \nabla^2 N_{\rm e} + \frac{1}{3} (\nabla \cdot \mathbf{V}) \left(\left[\frac{\partial N_{\rm e}}{\partial \ln E} \right] - 2N_{\rm e} \right) + \frac{\partial}{\partial E} (\dot{E}_{\rm rad} N_{\rm e}) + Q(\mathbf{r}, E, t)$$

Transport Equation (II)

Injection spectrum: broken power law

$$Q(E_{\rm e},t) = \begin{cases} Q_0(t) \left(\frac{E_{\rm e}}{E_{\rm b}}\right)^{\alpha_1} E_{\rm e} < E_{\rm b} \\ Q_0(t) \left(\frac{E_{\rm e}}{E_{\rm b}}\right)^{\alpha_2} E_{\rm e} \ge E_{\rm b}. \end{cases}$$
 Venter & de Jager (2007)

Time-dependent normalization:

$$\epsilon L(t) = \int_{E_{\rm min}}^{E_{\rm b}} QE_{\rm e}dE_{\rm e} + \int_{E_{\rm b}}^{E_{\rm max}} QE_{\rm e}dE_{\rm e}$$

$$L(t) = L_0 \left(1 + rac{t}{ au_c}
ight)^{-(n+1)/(n-1)}$$
 Pacini & Salvati (1973)

Transport Equation (III)

- SR & IC radiative losses
- **Adiabatic losses**
- Convection
- **Diffusion**

$$V(r) = V_0 \left(\frac{r}{r_0}\right)^{\alpha_V}$$

$$\kappa = \kappa_0 \left(\frac{E}{E_0'}\right)^q$$

$$B(r,t) = B_{\text{age}} \left(\frac{r}{r_0}\right)^{\alpha_B} \left(\frac{t}{t_{\text{age}}}\right)^{\beta_B}$$

Boundary Conditions

- At t = 0 all zones devoid of particles.
- Set of 'ghost points' outside the time boundary for DuFort – Frankel scheme.
- Reflective inner boundary R_{min} , escape at outer boundary R_{max} .
- Limiting energy Venter & de Jager (2007)

$$E_{\text{max}} = \frac{e}{2} \sqrt{\frac{L(t)\sigma}{c(1+\sigma)}}$$

Line of Sight calculation (LOS)

Code Comparison

Code Comparison

Code Comparison

Parameter Study: Spatiallydependent Results

Changes to k₀

Changes to V_o

Fitting Both PWN Spectrum and Size

Model Parameter	Symbol	Value	Torres et al. (2014)
Present-day B -field	$B(t_{age})$	$20.0~\mu\mathrm{G}$	14.0 μG
Initial spin-down power $(10^{38} \text{erg s}^{-1})$	L_0	1.87	1.0
B-field parameter	α_B	0.0	0
B-field parameter	eta_B	-1.0	-1.3
V parameter	$lpha_{ m V}$	-1.0	1.0
Particle bulk motion	V_0	0.098 c	$1.63 \times 10^{-4} \text{ c}$
Diffusion	K 0	$6.5\kappa_0$	κ_0

Conclusions

- Exploit increase in morphological data
- Model should predict both spectrum and energy-dependent PWN size
- Constrain B(r) and V(r)

Future Work

- Investigate boundary condition at R_{max} (particle build up) $R_{PWN}(t)$
- Add convective term to transport equation to handle k(r,E) correctly
- Fitting more PWNe
- Investigate population trends
- Older PWNe: B(t) and reverse shock
- 2D, 3D? MHD?

THANK YOU!

