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Purpose and Definitions

Q Mission Planning == Process by which the LAT team operates the
instrument via the MOC.

O Recall the three week cycle:
— GSSC defines “preliminary science timeline” (where to look)
— MOC uses pointing profile to schedule TDRSS contacts

— 10C’s define instrument timelines and real-time operations
requests

— MOC uploads the final ATS definition and starts it running

O All operations must be specifiable by in terms of three types of text
files defined in the Operations Data Products ICD:

— Timeline Files: define commands to be placed in the onboard
Automated Time Sequence (ATS)

— Upload-definition Files: provide the content of files to be uploaded
to the onboard file system

— PROC requests: instruct MOC personnel to execute pre-defined
scripts during real-time contacts.
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Mission Planning Software Functions

A Scheduling service: Planners (people) define various activities
to be performed at particular times via the Mission Planning
GUI application.

Q Translation service: Mission Planning software maps “logical”
activities into specific output product instances, for example:

— Physics Data Acquisition = ATS commands

— Charge Injection Calibration = ATS commands and/or
PROC requests

— Configuration Changes - Upload-definition files + PROC
requests

O Bookkeeping service: As data products are received,
Instrument responses / output are reconciled with requested
activities.
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Activity Planning

O Operator (planner) schedules activities based on constraints of
contacts, orbital events, science timeline.

O “Business rules” in planning software insert information into
appropriate lower-level tables:

— Acquisitions insert start/stop commands into command tables.
« MOOT provides the keys to request specific onboard
configurations.
« FMX resolves logical keys to onboard file names for use in
forming commands.
— Config changes insert upload-definition and PROC-request
records
« MOOT identifies what to upload, and FMX supplies the content

O Output products are created by selecting records from lower-level
tables based on timespan associated with a given Mission Week.

— The resulting files are bundled and transmitted to GSSC via
FASTCopy.
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Activity Reconciliation

Q Activities have states (Planned, Scheduled, In Progress,
Complete)

— Overall activity state is determined by the states of the
individual products for that activity.

O Downlinked data products are examined to reconcile planned
vs. completed activities

— Command-response telemetry updates ATS entry requests
and file-commit operations.

— Context records in LSE datagrams provide start/end times
for data associated with particular acquisitions.

O PROC requests may be reconcilable via web access to MOC's
mission planning tool and/or by log files the MOC sends to us.

O Reports can be generated by querying for records with a
particular state.
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Implementation Technologies

O Object model is implemented in Python — interoperates with other
parts of the Flight Operations S/W codebase.

O RDBMS platform is Oracle 10g
O cx_Oracle Python driver ( )
— Appears to be better maintained than DCOracle2

Q (SQLAIchemy — Python SQL toolkit and Object-Relational Mapper

— Define “table” objects that can be “autoloaded” from an existing
DB

— Declare “mappers” that associate user-defined Python objects
with a table or tables

— Framework “figures out” relationships to construct composite
objects from groups of related tables

— Concept of “Session/Unit of Work” allows the user to manipulate
mapped objects programmatically, then “flush” information back
to the database, with the framework performing the proper DML
operations in the right sequence.

Q 4Suite XML package for Python (www.4suite.org)
— DOM implementation, MarkupWriter object for XML generation


http://www.cxtools.net/
http://www.sqlalchemy.org/
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Object Model

Q Four groups of tables used to define composite objects. Each
object type has an associated collection

O CommandDb - collection of CmdDef objects
— Represent telecommands defined by LAT flight software

— Commands have one or more fields, each of which can
have an enumerated set of allowed values.

Q EventDb - collection of “events” defined by external entities
— OrbEvent: SAA passage, eclipse, node crossing
— ContactEvent: Scheduled uplink/downlink
— ObsEvent: Pointed or survey-mode observation
— Used to constrain activity scheduling
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Object Model (cont’d)

O ActivityDb - collection of LAT activities defined by planners for a
specific timespan
— Activity - lists of ATSEntry, ProcReq, UploadDef and Acquisition
objects

o ATSEntry - telecommand name + field values to be issued
from the ATS, at an absolute time or triggered by an EventDb
event.

 ProcReq -2 list of ProcCall objects, with instructions to the
MOC operator. Associated with a particular contact.

 UploadDef - list of UploadSeg objects, each of which
specifies a portion of a file to be uploaded (allows us to
distribute uploads of large files across multiple contacts).

— Defined list of “types” of activities equate to a user-interface
dialog and specific “business rules” for creation

e Current types are ATSList, Acquisition, FileLoad, ProcReq.
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CommandDb Tables
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EventDb Tables
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ActivityDb Tables
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From Objects to Product Files

aQ An ActivityDb object knows how to serialize itself to XML.

— An XML “timeline” document contains definitions of a set of
ProcReq’s, UploadDef’s, and ATSEntry’s

A The CHS “ProductUtils” package implements code to create
ICD-compliant product files from XML.

— The TransferPackage object takes a DOM-tree
representation of a timeline XML and instantiates the
necessary product files.

— Then bundles them into a compliant “timeline package”

13
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User Interface
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