
GLAST LAT Project Mission Planning Software Design, 5 December 2006

1

GammaGamma--ray Large ray Large
Area Space Area Space
TelescopeTelescope Mission Planning Software Design

5 December 2006

Bryson Lee
blee@slac.stanford.edu
650-926-2866

GLAST LAT Project Mission Planning Software Design, 5 December 2006

2

Purpose and DefinitionsPurpose and Definitions

Mission Planning == Process by which the LAT team operates the
instrument via the MOC.
Recall the three week cycle:
– GSSC defines “preliminary science timeline” (where to look)
– MOC uses pointing profile to schedule TDRSS contacts
– IOC’s define instrument timelines and real-time operations

requests
– MOC uploads the final ATS definition and starts it running

All operations must be specifiable by in terms of three types of text
files defined in the Operations Data Products ICD:
– Timeline Files: define commands to be placed in the onboard

Automated Time Sequence (ATS)
– Upload-definition Files: provide the content of files to be uploaded

to the onboard file system
– PROC requests: instruct MOC personnel to execute pre-defined

scripts during real-time contacts.

GLAST LAT Project Mission Planning Software Design, 5 December 2006

3

Mission Planning Software FunctionsMission Planning Software Functions

Scheduling service: Planners (people) define various activities
to be performed at particular times via the Mission Planning
GUI application.
Translation service: Mission Planning software maps “logical”
activities into specific output product instances, for example:
– Physics Data Acquisition ATS commands
– Charge Injection Calibration ATS commands and/or

PROC requests
– Configuration Changes Upload-definition files + PROC

requests
Bookkeeping service: As data products are received,
instrument responses / output are reconciled with requested
activities.

GLAST LAT Project Mission Planning Software Design, 5 December 2006

4

Activity PlanningActivity Planning

Operator (planner) schedules activities based on constraints of
contacts, orbital events, science timeline.
“Business rules” in planning software insert information into
appropriate lower-level tables:
– Acquisitions insert start/stop commands into command tables.

• MOOT provides the keys to request specific onboard
configurations.

• FMX resolves logical keys to onboard file names for use in
forming commands.

– Config changes insert upload-definition and PROC-request
records

• MOOT identifies what to upload, and FMX supplies the content
Output products are created by selecting records from lower-level
tables based on timespan associated with a given Mission Week.
– The resulting files are bundled and transmitted to GSSC via

FASTCopy.

GLAST LAT Project Mission Planning Software Design, 5 December 2006

5

Activity ReconciliationActivity Reconciliation

Activities have states (Planned, Scheduled, In Progress,
Complete)
– Overall activity state is determined by the states of the

individual products for that activity.
Downlinked data products are examined to reconcile planned
vs. completed activities
– Command-response telemetry updates ATS entry requests

and file-commit operations.
– Context records in LSE datagrams provide start/end times

for data associated with particular acquisitions.
PROC requests may be reconcilable via web access to MOC’s
mission planning tool and/or by log files the MOC sends to us.
Reports can be generated by querying for records with a
particular state.

GLAST LAT Project Mission Planning Software Design, 5 December 2006

6

Data FlowsData Flows

ATS
Def

Upload
Defs

PROC
Requests

GUI
M

P O
bjects

FC
 / C

ron
scripts

M
P O

bjects MP DB
Tables

Data
Products

GSSC/
MOC

FASTCopy

Receive

FASTCopy

Send

GLAST LAT Project Mission Planning Software Design, 5 December 2006

7

Implementation TechnologiesImplementation Technologies

Object model is implemented in Python – interoperates with other
parts of the Flight Operations S/W codebase.
RDBMS platform is Oracle 10g
cx_Oracle Python driver (www.cxtools.net)
– Appears to be better maintained than DCOracle2

SQLAlchemy – Python SQL toolkit and Object-Relational Mapper
(www.sqlalchemy.org)
– Define “table” objects that can be “autoloaded” from an existing

DB
– Declare “mappers” that associate user-defined Python objects

with a table or tables
– Framework “figures out” relationships to construct composite

objects from groups of related tables
– Concept of “Session/Unit of Work” allows the user to manipulate

mapped objects programmatically, then “flush” information back
to the database, with the framework performing the proper DML
operations in the right sequence.

4Suite XML package for Python (www.4suite.org)
– DOM implementation, MarkupWriter object for XML generation

http://www.cxtools.net/
http://www.sqlalchemy.org/

GLAST LAT Project Mission Planning Software Design, 5 December 2006

8

Object ModelObject Model

Four groups of tables used to define composite objects. Each
object type has an associated collection
CommandDb collection of CmdDef objects
– Represent telecommands defined by LAT flight software
– Commands have one or more fields, each of which can

have an enumerated set of allowed values.
EventDb collection of “events” defined by external entities
– OrbEvent: SAA passage, eclipse, node crossing
– ContactEvent: Scheduled uplink/downlink
– ObsEvent: Pointed or survey-mode observation
– Used to constrain activity scheduling

GLAST LAT Project Mission Planning Software Design, 5 December 2006

9

Object Model (contObject Model (cont’’d)d)

ActivityDb collection of LAT activities defined by planners for a
specific timespan
– Activity lists of ATSEntry, ProcReq, UploadDef and Acquisition

objects
• ATSEntry telecommand name + field values to be issued

from the ATS, at an absolute time or triggered by an EventDb
event.

• ProcReq list of ProcCall objects, with instructions to the
MOC operator. Associated with a particular contact.

• UploadDef list of UploadSeg objects, each of which
specifies a portion of a file to be uploaded (allows us to
distribute uploads of large files across multiple contacts).

– Defined list of “types” of activities equate to a user-interface
dialog and specific “business rules” for creation

• Current types are ATSList, Acquisition, FileLoad, ProcReq.

GLAST LAT Project Mission Planning Software Design, 5 December 2006

10

CommandDbCommandDb TablesTables

GLAST LAT Project Mission Planning Software Design, 5 December 2006

11

EventDbEventDb TablesTables

GLAST LAT Project Mission Planning Software Design, 5 December 2006

12

ActivityDbActivityDb TablesTables

GLAST LAT Project Mission Planning Software Design, 5 December 2006

13

From Objects to Product FilesFrom Objects to Product Files

An ActivityDb object knows how to serialize itself to XML.
– An XML “timeline” document contains definitions of a set of

ProcReq’s, UploadDef’s, and ATSEntry’s
The CHS “ProductUtils” package implements code to create
ICD-compliant product files from XML.
– The TransferPackage object takes a DOM-tree

representation of a timeline XML and instantiates the
necessary product files.

– Then bundles them into a compliant “timeline package”

GLAST LAT Project Mission Planning Software Design, 5 December 2006

14

User InterfaceUser Interface

Work in progress,
will be
implemented in
PyQT. “main
window” dialog
shown here:
Add/Edit
operations will
invoke type-
specific dialogs
for activity
creation.

	Purpose and Definitions
	Mission Planning Software Functions
	Activity Planning
	Activity Reconciliation
	Data Flows
	Implementation Technologies
	Object Model
	Object Model (cont’d)
	CommandDb Tables
	EventDb Tables
	ActivityDb Tables
	From Objects to Product Files
	User Interface

