g GLAST LAT Project Mission Planning Software Design, 5 December 2006
|

Gamma-ray Larg

Area Space
Telescope S Mission Planning Software Design
i 4| S5 December 2006

Bryson Lee
blee@slac.stanford.edu
650-926-2866

g GLAST LAT Project Mission Planning Software Design, 5 December 2006
|

Purpose and Definitions

Q Mission Planning == Process by which the LAT team operates the
instrument via the MOC.

O Recall the three week cycle:
— GSSC defines “preliminary science timeline” (where to look)
— MOC uses pointing profile to schedule TDRSS contacts

— 10C’s define instrument timelines and real-time operations
requests

— MOC uploads the final ATS definition and starts it running

O All operations must be specifiable by in terms of three types of text
files defined in the Operations Data Products ICD:

— Timeline Files: define commands to be placed in the onboard
Automated Time Sequence (ATS)

— Upload-definition Files: provide the content of files to be uploaded
to the onboard file system

— PROC requests: instruct MOC personnel to execute pre-defined
scripts during real-time contacts.

g GLAST LAT Project Mission Planning Software Design, 5 December 2006
—

Mission Planning Software Functions

A Scheduling service: Planners (people) define various activities
to be performed at particular times via the Mission Planning
GUI application.

Q Translation service: Mission Planning software maps “logical”
activities into specific output product instances, for example:

— Physics Data Acquisition = ATS commands

— Charge Injection Calibration = ATS commands and/or
PROC requests

— Configuration Changes - Upload-definition files + PROC
requests

O Bookkeeping service: As data products are received,
Instrument responses / output are reconciled with requested
activities.

g GLAST LAT Project Mission Planning Software Design, 5 December 2006
»

Activity Planning

O Operator (planner) schedules activities based on constraints of
contacts, orbital events, science timeline.

O “Business rules” in planning software insert information into
appropriate lower-level tables:

— Acquisitions insert start/stop commands into command tables.
« MOOT provides the keys to request specific onboard
configurations.
« FMX resolves logical keys to onboard file names for use in
forming commands.
— Config changes insert upload-definition and PROC-request
records
« MOOT identifies what to upload, and FMX supplies the content

O Output products are created by selecting records from lower-level
tables based on timespan associated with a given Mission Week.

— The resulting files are bundled and transmitted to GSSC via
FASTCopy.

g GLAST LAT Project Mission Planning Software Design, 5 December 2006
—

Activity Reconciliation

Q Activities have states (Planned, Scheduled, In Progress,
Complete)

— Overall activity state is determined by the states of the
individual products for that activity.

O Downlinked data products are examined to reconcile planned
vs. completed activities

— Command-response telemetry updates ATS entry requests
and file-commit operations.

— Context records in LSE datagrams provide start/end times
for data associated with particular acquisitions.

O PROC requests may be reconcilable via web access to MOC's
mission planning tool and/or by log files the MOC sends to us.

O Reports can be generated by querying for records with a
particular state.

GLAST LAT Project Mission Planning Software Design, 5 December 2006

Data Flows

Data
Products ~

FASTCopy

Receive

GSSC/

uoiD / 04
$103[q0 dIN

MOC

FASTCopy
Send

=

g GLAST LAT Project Mission Planning Software Design, 5 December 2006
»

Implementation Technologies

O Object model is implemented in Python — interoperates with other
parts of the Flight Operations S/W codebase.

O RDBMS platform is Oracle 10g
O cx_Oracle Python driver ()
— Appears to be better maintained than DCOracle2

Q (SQLAIchemy — Python SQL toolkit and Object-Relational Mapper

— Define “table” objects that can be “autoloaded” from an existing
DB

— Declare “mappers” that associate user-defined Python objects
with a table or tables

— Framework “figures out” relationships to construct composite
objects from groups of related tables

— Concept of “Session/Unit of Work” allows the user to manipulate
mapped objects programmatically, then “flush” information back
to the database, with the framework performing the proper DML
operations in the right sequence.

Q 4Suite XML package for Python (www.4suite.org)
— DOM implementation, MarkupWriter object for XML generation

http://www.cxtools.net/
http://www.sqlalchemy.org/

g GLAST LAT Project Mission Planning Software Design, 5 December 2006
»

Object Model

Q Four groups of tables used to define composite objects. Each
object type has an associated collection

O CommandDb - collection of CmdDef objects
— Represent telecommands defined by LAT flight software

— Commands have one or more fields, each of which can
have an enumerated set of allowed values.

Q EventDb - collection of “events” defined by external entities
— OrbEvent: SAA passage, eclipse, node crossing
— ContactEvent: Scheduled uplink/downlink
— ObsEvent: Pointed or survey-mode observation
— Used to constrain activity scheduling

% GLAST LAT Project Mission Planning Software Design, 5 December 2006

Object Model (cont’d)

O ActivityDb - collection of LAT activities defined by planners for a
specific timespan
— Activity - lists of ATSEntry, ProcReq, UploadDef and Acquisition
objects

o ATSEntry - telecommand name + field values to be issued
from the ATS, at an absolute time or triggered by an EventDb
event.

 ProcReq -2 list of ProcCall objects, with instructions to the
MOC operator. Associated with a particular contact.

 UploadDef - list of UploadSeg objects, each of which
specifies a portion of a file to be uploaded (allows us to
distribute uploads of large files across multiple contacts).

— Defined list of “types” of activities equate to a user-interface
dialog and specific “business rules” for creation

e Current types are ATSList, Acquisition, FileLoad, ProcReq.

GLAST LAT Project

GLAST_ISOCNV3HKVERFIELDS

Mission Planning Software Design, 5 December 2006

CommandDb Tables

GLAST_ISOCV3HKSUBSETHIELDS

SUBSETID_PK

SETMAME
VERID_FHK
OLDWERID_FK

MUMBER (22}

WARCHARZ (37)

MUMBER (223
MUIMBER (223

Y

GLAST_ISOCV3HKSUBHELDS

*

. WERID_PK

RELEASEMAME
BUILDNAME
INSTALLED
VALIDBEG
WVALIDEND
DESCSHORT
DESCLONG

NUMEER (22)

VARCHARZ (32)
WARCHAR?Z (32)
TIMESTAMIP(E)
TIMESTAIP(R)
TIMESTAMIP(R)
WVARCHAR? (512)
CLOB (4000)

GLAST_ISOCV3IHHKSSIFIELDS

, SSID_PK

SSINAME
DESCSHORT
DESCLONG

NUMEER (22}

WARCHARZ (32)
WARCHAR? (258)
CLOB (40003

GLAST_ISOCV3IHKCMDFIELDS

Y

, CMDID_PK

CMD_MMNEM
AFID

SSID_FK
FUNCODE
DUMPFLAG
DUKMPAFID
NUMBITS
RUNTIMEF LAG
CRITICALF LAG
CRITICALCOND
CHECKSUMFUN
ENDITEMWRF
DESCSHORT
DESCLONG
VERID_FK
OLDWERID_FK

NUMEER (22}

WARCHARZ (32)
NUMBEER (22)
NUMEER (22}
NUMEER (22)
WARCHARZ (2)
NUMEER (22)
NUMEER (22}
NUMEER (22}
WARCHARZ (32)
WARCHARZ (32)
WARCHARZ (32)
WARCHAR?Z (32)
WARCHARZ (512)
CLOB (4000)
NUMEER (22)
NUMBER (22}

; SUBID_FPK

SUBSETID_FK
WVALUEMAME
FIXEDWALUE
CRITICALF LAG
DESCSHORT
DESCLONG

NUMEER (22)

NUWEER (22)
WARCHARZ (32)
NUWEER (22)
WARCHARZ (2)
WARCHAR? (512)
CLOB (40003

GLAST_ISOC.V3HKFLDFIELDS

, FLDID_PK

FLODMAME
CMDID_FK
DATTYPID_FK
ARRAYSIZE
STARTEYTE
STARTEIT
FLOLEMGTH
ELBWOFFSET
LOWEBOUND
HIGHBOUND
SUBSETID_FK
DESCSHORT
DESCLONG
VERID_FH
OLDWERID_FK

MUWBER (22)

WARCHAR? (32)
NUMEER (22)
NUMEER (22)
NUMEER (22)
NUMEER (22)
NUMBER (22)
NUMEER (22)
NUMEER (22)
NUMEER (22)
NUMBER (22)
NUMEER (22)
WARCHAR? (512)
CLOB (4000)
NUMEER (22)
NUMBER (22)

*

10

GLAST LAT Project Mission Planning Software Design, 5 December 2006

EventDb Tables

GLAST ISOC.MP_EPHEMDATA GLAST ISOC.MP_ORBEVT
ICDFILE_FK NUMBER (22} . ORBEVTTYPE WARCHARZ (18)
VEHICLE VARCHARZ (18)
. , TBEG TIMES TAMP(E)
TEFHEM TIMES TAMP(E)
. TEND TIMES TAMP(E)
GLAST ISOC.MP_VEHICLE ————>» E1 FLOAT (126) ORBEEG NUMEER (22)
, WEHICLE WARCHARZ (16) E2 FLOAT {128) ORBEND NUMEBER (22}
E3 FLOAT (128) ICOFILE_FK NUMBER {22)
E4 FLOAT (128)
ES FLOAT (126)
E@ FLOAT (128)
GLAST ISOC.MP_CONTACT
= = GLAST_ISOC.MP_OBSEVT
+ VEHICLE VARCHARZ (16)
ALl B0 L BB S CONTACTSTATE WARCHARZ (16) o Ml
, TBEG TIMES TAMP(E)
» RETSVC olptitHab T event NUMBER {22}
TEND TIMES TAMP(&)
SUPIDEN VARCHARZ (18)
ANGLE1 FLOAT (128)
, TBEG TIMES TAMP(E)
GLAST_ISOC.MP_FWDSVC 7 ANGLEZ FLOAT (126)
FWDSYC VARCHARZ (18) TEND TIMESTAMP(E) ICDFILE_FK MUMBER (223
FWDSWC VARCHARZ (18)
RETSWEC VARCHARZ (18)
GLAST ISOC.MP_CONTACTSTATE / ICDFILE_FK NUMBER (22)

, CONTACTSTATE WARCHARZ (16)

11

GLAST LAT Project Mission Planning Software Design, 5 December 2006

ActivityDb Tables

GLAST SO0 P M I_ATSEMTRY
s ATSERTRY_PH RLAREER (35
ACTPATY_FH LR (55 GLAST ISOCFEL MPI_ATSARG
T SRR 4 . ATEERTRY_FH LSRR 155
—— Ltk e, WA ARTHAR 3]
TRIGHAME SRR e—
TRIGORET LR (355 VALLIE AR R 3]
TRIGEDGE AR AR 3
TRIGOFST RLREER (359
GLAST SO0 RS M ACOLISITION Eﬁ"nﬁ ﬁ:::
v A CHIEITION_PH RUAREER (53 / STATE AR HARS 3]
AL TRATY_FH RUPREER (35 STATUS AR AR 3]
- R GLAST SO0 FE._MPI_METIMTY -
WCOT_HEY HLPREER (355 e ACTRTY_PH HLAREER (355
REC_START TIRESTAP TRE SRRT AR (365 /
REQ_STOR TIREST AP L) TRECFRST TISAEST AP E)
ACT_START THEEST AP TRECLAST THREEST A
ACT_STOR TIREEST AP TCORPLETED TIREEST AP GLAST 1500 L. MM PROCRED GLAST |SOC RS MNP PROCEALL
GROUKDE: RUREER (355 . STATE AR ARG (365 . PRICCREO_PH RLSEER (35 PROCCALL PH T
:m ::::::j‘:";ﬁ ::::':“ ':E:::j: | A TRATY_FH RLREER (357 PRCCREC FH FLPREETR 5% GLAST 1500 FEL_MP1_PROCCAL LARG
P B i PRt ———g| hPhAE SR AR (36 CALLSES AR (35 - PROCZALL FH LR (35
o IHETRLC TS AL R 14 L0
RIEC_ LG A i LSRR (35 TRLAK THEET AP 3 = R AR S WANE R AR 5
RED_FRO| LOGICA DG KUPREER (359 TUPDATE TIESTAMP(E) b " okl MR (25
RIE0_ DLW A 0 RUPREER (35 TEST CHAR 1) e il TRECHENTE e —— M“;.I.I.I‘T r.;mf:r
A T_FR_L OnGEC AL HLPREER (55 PRICRITY AR AR (18] [CCRPLTE ———a TiC Ol TR i ;
. . " TATH VARCHUARE (1) STATE VAR IAR 3
ACT Pl LCGICALLG RUPREER (35 DESCSHORT SRRT AR (B4 — T o s
ACT_Fbd_LOSCMLOG HFREER (35 CRSCLOWG ANFLC A 4000
ATATE SRR AR (3]
STATUS SRRAT AR (5] ‘It
GLAST S04 B ML OAD0EF
. UPLOADDEF P HUBEER (35
ACTMTY_FH RUREER: (355
RO LOGICAL RUREER: (355
PR ASEILE AR AR [
GLAST SO0 PEL M _TIMELINEPRG PR WA (33
o= i FSTRURRT VARCHARS (36
_ RLBEER (35 RODE AR AR (18
DEACE AR ARG B e
tnrzm-a.nc mﬁ Ern e — GLAST 1500 FEL._MF1_UPLOATSES
e e CORTAC T LAREER (35 . UPLOADCOR FH LSRR (35
rern — WEE LT UL ULl] w STARTOYTE UAEER (25
TC CRPLETED TIREST AP
STATE AR MR () ALY TRS LAEER: (35
STATUS AR AR (355

12

g GLAST LAT Project Mission Planning Software Design, 5 December 2006
»

From Objects to Product Files

aQ An ActivityDb object knows how to serialize itself to XML.

— An XML “timeline” document contains definitions of a set of
ProcReq’s, UploadDef’s, and ATSEntry’s

A The CHS “ProductUtils” package implements code to create
ICD-compliant product files from XML.

— The TransferPackage object takes a DOM-tree
representation of a timeline XML and instantiates the
necessary product files.

— Then bundles them into a compliant “timeline package”

13

g‘ GLAST LAT Project Mission Planning Software Design, 5 December 2006

User Interface

IS0C Mission Planning

D WO r k I n p ro g reSS , ~Existing Activities

—Operations

will be R

Implemented in —

PyQT. “main sae

window” dialog

shown here:
QO Add/Edit

operations will

—Mew Activities

iInvoke type-

Type |Begin |End |

specific dialogs iten
for activity e
creation.

14

	Purpose and Definitions
	Mission Planning Software Functions
	Activity Planning
	Activity Reconciliation
	Data Flows
	Implementation Technologies
	Object Model
	Object Model (cont’d)
	CommandDb Tables
	EventDb Tables
	ActivityDb Tables
	From Objects to Product Files
	User Interface

