Cal Peds and Gains

L. Baldini, A. Borgland, J. Bregeon, D. Paneque

August 5, 2008

CAL monitoring: what do we have?

- Pedestals (DigiLong end of run):
 - Cal pedestal distributions (12288 histograms);
 - ▶ Mean and RMS of the pedestal distributions (4 ranges, with two different methods, fit and truncated average).
 - Deviation of the mean and RMS with respect to the reference (with the truncated average only).
 - ▶ Some additional information (dof, χ^2) for the fitting method.
- Gain ratios (DigiLong end of run):
 - ▶ PM, Pp, Mm ratios for all crystals (1536 \times 3 histograms).
 - Mean and RMS of those distributions (two different methods, fit and truncated average).
 - Same additional stuff for the fitting method.
- Trending (DigiLong trending, within each run):
 - Pedestal value in 5 min time bins (12288 trending plots);
 - Pedestal deviations in 5 min time bins (12288 trending plots);
 - ▶ Gain ratios in 5 min time bins (1536 \times 3 trending plots).
- A whole bunch of regular plots (FastMon, Digi, Recon).

What is this presentation about

- Decide whether what we have is appropriate:
 - ▶ Do we have all we need?
 - ▶ Do we have too much?
 - Do we have it too often?
- Identify the sensible quantities to put alarms on;
 - Eventually data will tell us;
 - But need input from the CAL group for setting the limits.
- ▶ Decide whether we want the (same) quantities from both the truncated average and the fitting method;
 - Detailed comparison follows (run 0238071573);
 - Need to do it on a series of runs and quantify the variations, but this is a first step.

A few remarks on the fitting procedure

- ► We have quite a few handles to try and make sure the fit is done properly:
 - ► The fitting function (a gaussian, unless something different is specified).
 - ► The number of iterations (mean and RMS from the previous iteration used in the next one);
 - The rebin factor for each histogram (when we're absolutely sure we can change the binning in the histograms at the creation time);
 - ► The number of RMS around the mean for defining the fitting sub-range (separate for left and right).
- All those handles have been fine-tuned by hand, essentially.

A few remarks on the fitting procedure (continued)

Data type	Function	Iter.	Rebin	Range L	Range R
Ped LEX8	gaussian	1	1	1.5	3.5
Ped LEX1	gaussian	1	1	3.0	3.0
Ped HEX8	gaussian	1	1	1.5	3.5
Ped HEX1	gaussian	1	1	3.0	3.0
Gain RPM	mod. gauss*	2	2	3.0	3.0
Gain RPp	gaussian	2	10	2.0	1.0
Gain RMm	gaussian	2	10	2.0	1.0

^{*}The functional form is:

$$f(x) = \frac{p_0}{\sqrt{2\pi}p_2} e^{-\left|\left(\frac{x-p_1}{p_2}\right)^{p_3}\right|}$$
 (1)

which reduces to a gaussian for $p_3=2$ and to a *square* function when $p_3\to\infty$. $p_3=8$ is chosen for fitting RPM ratios.

Pedestals: methodology

- ▶ Gaussian fit on a suitable sub-range (one or more iterations):
 - Get mean and RMS, along with χ^2 and some other things.

Pedestals: mean values

Pedestals: RMS values

- ▶ The *outliers* are real and *not* results of problematic fits:
 - $ightharpoonup \chi^2$ is ok when RMS is large.
 - ▶ Slide 6 refers to channel 848 (RMS is \simeq 12 in LEX8).

Pedestals: reduced χ^2 distributions

- ► LEX1 and HEX1 suffer from the fact that the pedestal distributions are only a few bins wide;
 - But the fit always converges correctly (looking by eye).

Pedestals: comparison with the truncated average (mean)

- Agreement on the average values at a fraction of % level;
 - Plots show the ratio between the fitting method and the truncated average method;
 - Small bias (0.1–0.2 %, who cares?)

Pedestals: comparison with the truncated average (mean)

A different view: distribution of the values.

Pedestals: comparison with the truncated average (RMS)

- ▶ Agreement of the RMS values is generally good (not always);
 - ► The truncated average method gives a few more spikes (cfr. channels 576–578). Real or not (see following slides)?

Pedestals: comparison with the truncated average (RMS)

- ► A different view on the comparison;
 - Black is the fitting method, red is the truncated average.

Pedestals: comparison with the truncated average (RMS)

Another different view: distribution of the values.

Pedestals: channel 577 LEX8

- ► The plot on the right is the zoomed version of the one on the left (channel 577 LEX8);
 - ▶ The fitting method gives RMS = 5.13;
 - ▶ The truncated average gives RMS \simeq 9.
- Need to assess which one is correct and which one is wrong;
 - If the truncated average excludes the few bins below 100 and above 700 I don't understand how it can return \simeq 9. The *raw* RMS on the zooomed plot is only 6.5 or so.

Pedestals: comments

- Mean values:
 - Fitting and truncated average are really the same thing, no noticeable difference.
- RMS values:
 - ▶ There are occasional differences for a few channels;
 - The fit converges correctly in those cases;
 - Need to understand why the truncated average does not agree and whether this difference is telling us something interesting or not.
- ► The subtraction of the pedestal values (in the CAL db) is not yet implemented with the fitting method;
 - If we want to use this tool we need to do it (probably need some help from David).
- Trending the pedestal-related quantities with sub-run resolution is not implemented with the fitting method—and may be problematic.

Gain ratios: methodology

▶ Unphysical spike at $\simeq 1$ now fixed—I was assigning a large error in the meantime to neglect it in the fit.

Gain ratios: mean values

- ▶ In some cases the error associated with the fit is large;
 - But the fit parameter still look correct;
 - Reasonably uniform across the detector.

Gain ratios: RMS values

▶ Again the fit seems to converge in all cases.

Gain ratios: reduced χ^2 distributions

- ▶ The reduced χ^2 distribution looks poor for the PM ratios:
 - ▶ Clearly the fit function is not *right*—at least in some cases;
 - ▶ But still the fit parameters are reasonable.

A problematic channel: 755 (PM)

- ▶ The fit for this one has a reduced $\chi^2 \simeq 12$;
 - ▶ The fitting tool gives mean = 1.01, RMS = 0.23
 - ightharpoonup The truncated average gives mean = 0.95, RMS = 0.24
- ▶ Even questionable what we are trying to measure, here. . .

Gains: comparison with the truncated average (mean)

- ► Good agreement (at the level of 10%);
 - Clear (irrelevant) bias due the shape of the distributions (cfr. slide 17);
 - Probably both are good enough to put alarms on.

Gains: comparison with the truncated average (mean)

► The fitting method seems slightly more uniform across the detector.

Gains: comparison with the truncated average (mean)

Another different view: distribution of the values.

Gains: comparison with the truncated average (RMS)

- ▶ Numbers for Pp and Mm are different;
 - ▶ Reasonable, given how the distributions look like (cfr. slide 17—there's a lot of stuff outside the peak).

Gains: comparison with the truncated average (RMS)

► Again the fitting method seems slightly more uniform across the detector.

Gains: comparison with the truncated average (RMS)

Another different view: distribution of the values.

Gain ratios: comments

- ► The gain distributions are highly non gaussian and not particularly well behaved;
 - ▶ Fitting and truncated average give *different* numbers.
 - The difference is mainly an overall (irrelevant) multiplicative factor;
 - ► The ratio between the two methods is reasonably uniform across the detector—probably they're both good enough for putting alarms on.
 - Results from the fitting procedure seem slightly more uniform across the detector (distributions of the values are narrower).

LAC thresholds

- ▶ Left: distribution of the LAC values over all the crystal *before* the first in-flight calibration;
- Right: same thing after the calibration.

Conclusions

- Which plots are useless ?
- Which plots are missing ?
- What method shall we use for pedestal monitoring ?
- Which alarms shall we put for pedestal monitoring?
- What method shall we use for ratios monitoring ?
- Which alarms shall we put for ratios monitoring ?
- About fitting vs. truncated average:
 - Truncated average allows trending with sub-run granularity.
 - ► Truncated average already provides deviations wrt. reference.
 - Distributions of the output values from the fitting are generally narrower and more well behaved—easier to put alarms on but do the outliers in the truncated average tell us something?