

CAL MIP finder

- Algorithm update
- Bug correction (Rev 1.16)
- Selection efficiencies

The algorithm - Rev1.16 (1/4)

- Source code in CaIRecon/src/MipFinding/StdMipFindingTool.cxx
- Uses only CAL information!
- Defines map of "good" hits = digi's from CaIXtalRecData with energy between 2 MeV and 50 MeV
- Remark: in the following, a "good" hit is "free" when it does not belong already to another track
- Requires >3 "good" hits in CAL
- Finds MIP tracks (see next slides): each track will be a set of "good" hits $\{C 0, C 1, C n(n=2, \ldots N)\}$
- Stores CalMipTrack's properties in the TDS
- Stores best track in merit (AnalysisNtuple/src/CalMipValsTool.cxx) and all tracks in recon file

The algorithm - Rev1.16 (2/4)

- Finds C0: farthest "free" "good" hit from the CAL single cluster centroid, with energy between 8 MeV and 25 MeV (for a good start)
- Finds C1:
- Loop over all remaining "free" "good" hits Hi in other layers (don't want an horizontal direction at the beginning)
- For each hit Hi, propagate (G4Propagator) from C0 to Hi, identify crossed volumes and proceed as follows each time a CAL crystal Xij is found (propagation step \#j):
- If Xij in same layer as CO : continue propagation (no horizontal direction)
- Stop (Hi will not be a C1 candidate) in the following cases:
- $\quad \mathrm{Xij}_{\mathrm{ij}}$ is not in same layer as Hi
- $\quad \mathrm{Xij}$ is a "bad" hit (either log not in CaIXtaIRecData or too low / high energy)
- Xij is a "good" hit, but not "free"
- If Xij is a "free" "good" hit in same layer as Hi:
- If $\mathrm{Xij}_{\mathrm{ij}}$: Hi , continue propagation
- Otherwise stop, determine the exact path lengths through CO and Hi , and require corrected energies ec_0 = e_0 * CsilHeight / arclen_0 and ec_i=e i * CsIHeight / arclen_i (vertical equivalent energies) to lie between 9 MeV and $1 \overline{6} \mathrm{MeV}$. If ok, then we have a $\mathbf{C 1}$ candidate!
- $\quad \mathrm{C} 1$ is the closest hit to $\mathbf{C 0}$ among the candidates (if any)
- If no C1 found, start with another C0

The algorithm - Rev1.16 (3/4)

- Finds Cn ($\mathrm{n}=2, \ldots$):
- Start with direction $\Delta=$ either C0C1 ($n=2$) or the last fitted direction ($n>2$, see below)
- Propagate along Δ (forwards and backwards) till CAL edge, identify crossed volume and proceed as follows each time a CAL crystal Xj is found (propagation step \#j):
- If Xj is a "good" hit, but not "free", continue propagation (we can have crossing tracks)
- Otherwise stop the propagation:
- if X_{j} is a bad hit, try with another direction: to avoid missing hits by stopping the propagation too soon (because of the CAL segmentation and/or error on Δ direction), propagate also along several lines parallel to Δ (and tangent to 5 cylinders of radius between 4 and 20 mm)
- if Xj is a "free" "good" hit, compute its vertical equivalent energy ec_jand store it as a Cn candidate if ec j between 9 MeV and 16 MeV
- $\quad \mathrm{Cn}$ is the closest hit to Δ among the candidates (if any)
- If a new Cn has been found:
- Add Cn to the track and fit the new direction Δ through a least square method in both XZ and YZ planes (crystal lateral and longitudinal position errors set to CsIWidth $/ \sqrt{ } 12 \mathrm{~mm}$ and 10 mm , resp.; to be improved later...)
- Go find another Cn
- If no more Cn found, go search for another track among the remaining "free" "good" hits

The algorithm - Rev1.16 (4/4)

- For each event, only store tracks $\{\mathbf{C 0}, \mathrm{C} 1, \mathrm{Cn}(\mathrm{n}=2, \ldots \mathrm{~N})\}$ with $\mathrm{N}>3$ in recon file
- CalMipTrack properties:
- point, direction, distance to closest CAL edge
- chi2 $=($ chi2_xz + chi2_yz) / (Nhits-1) from least square method
- arcLen $=$ summed over all layers containing at least one hit for this track
- ecor = mean equivalent vertical energy computed by summing and correcting energies on a layer basis (to avoid the situation where the final track does not cross some of its hits!)
- ecorRms = RMS over the different layers
- erm = total energy (from CalXtalRecData) contained in a cylinder of 1 Moliere radius around track
- In the merit tuple: number of tracks and best track (i.e. best chi2) properties
- In the following: plot also dirErr = Acos(CalMipTrackDir*Tkr1Dir)

My simulations (1 GeV protons from a surface below the CAL)

F. Piron

My simulations (all gamma's)

F. Piron

GR-HEAD1.620 simulations

Pre-cuts :
TkrNumTracks > 0
\&\& CaICsIRLn > 4
\&\& CalEnergyRaw > 5
\&\& CalTotaICorr < 3.5
\&\& CaIDeadTotRat < 0.15
\&\& CalGapFraction < 0.30
\&\& CaITransRms < 60
\&\& CalLRmsAsym > 0

Cuts :

CalMipErm / CalMipArcLen < 1 \&\& CalMipChi2 < 30 \&\& CalMipEcor between 8 and 25 MeV \&\& CalMipEcorRms < 5 \&\& dirErr < 0.7

GR-HEAD1.620 simulations

GR-HEAD1.620 simulations

105349 events with 0 track (70%)
44708 events with >0 trac $k(29 \%)$
56788 events with 0 track (96%)
1964 events with $>0 \operatorname{track}(3 \%)$

F. Piron

GR-HEAD1.620 simulations

GR-HEAD1.620 simulations

F. Piron

GR-HEAD1.620 simulations

F. Piron

GR-HEAD1.620 simulations

F. Piron

