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1 Introduction

The LAT is expected to measure the direction and primary energy of photons ranging
from 20 MeV to over 300 GeV over a 2.5 sr solid angle. It is composed of 16 towers. Each
of them has a CsI calorimeter (CAL), of a thickness of 8.6 radiation lenghts along the z-
axis, over which sits a tracker (TKR), of a thickness of 1.3 radiation length. The CAL is
designed to measure the primary energy of the photons (£,). Because of matter upstream
of the CAL and its relatively small depth, the total energy deposit in the CAL is rarely by
itself a reliable measure of £,. Its understanding is further complicated by the large solid
angle in which photons are observed. For these reasons, energy reconstruction methods are
developped, adapted to different configurations.

The method presented in this note, named CalLikelihood, reconstructs primary energies
in the range of 50 MeV to 300 GeV and within 49 ° of the vertical for photons converting in
the TKR and for which the latter reconstructs a direction. The method could in principle
be extended to energies above and angles beyond these given ranges, as well as to events
converting in the CAL.

The principles of physics underlying the analysis are presented in section 2. The recon-
struction itself is based on a maximum-likelihood method. The probability density function
(PDF) which it will use and the observable which it describes is explained in section 3.1. Be-
cause of the complexity of the LAT phase-space, a large number of PDFs will be constructed
corresponding to as many different classes of events. The latters are defined in 4. Lastly,
the reconstruction method itself, and a study of its performance, is given in 5.

2 Basic Principles: LAT versus Shower Geometry

The instrument primarily uses the measurement of the total energy deposition in the
CAL (Q,) to reconstruct E,. This measurement is classically affected by noises such as
photon statistics or electronic noise, for which little can be done (0.4 MeV /crystal for crystal
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energy deposits < 100 MeV, 10 MeV /crystal for crystal energy deposits > 1GeV). Other
parameters come into play which are the result of both the shape of the energy deposit and
the geometry of the LAT.

The energy deposit is pear-shaped, this because in the GLAST energy range, photons
interact with matter mainly by creating a shower of electrons, positrons and photons of
lesser energy. The shower posesses a rotational symetry around its direction, this because
of momentum conservation and the large number of created particles. The average shower
energy density profile can be factorised in a longitudinal times a radial distribution [5].
Shower containment in the CAL, defined here as 4, = g—:, should thus be described with
parameters specific to the longitudinal or the lateral development of the pear-shaped shower.

The geometry of the LAT itself is cubic: rows of crystals or strips, layers stacked upon
layers. It is not adapted to the shape of the showers unless in the case of on-axis photons. For
off-axis photons, the energy sampling performed by the CAL crystals will suffer from a mixing
of the lateral and longitudinal shower parameters. Using spherical coordinates to describe the
shower direction, the polar angle is the angle between the photon direction and the vertical
(noted @ for the Monte-Carlo truth, 6 for the TKR-reconstructed value). The azimuthal
angle lies in the horizontal plane defined by the crystal layers. Both are characteristic of this
mixing. Although the azimuthal angle affects the measurements performed by the crystals,
the impact on the sum in one layer, the total energy deposit measurement in one layer,
is mainly averaged out. In this analysis, the azimuthal angle is ignored; the effect will
implicitly be taken into account through the calibration of the method. The mixing effect is
thus solely described using 6. It will not be addressed before section 4. In other words, until
then, longitudinal shower parameters will effectively characterize longitudinal energy leaks,
whereas lateral shower parameters will characterize lateral energy leaks.

2.1 Lateral Shower Parameters

A few constants and observables must first be defined to understand the effect of the
lateral leaks. To describe the physics of the shower, the Moliere radius (R = 38 mm in CsI)
is used as the radial scale. Just as for the radiation length, it depends solely on the matter
encountered by the shower [6]. 90% of the energy is contained within a cylinder of revolution
the shower axis and of radius Rj;. In comparison, the CAL crystal width is 0.73 Ry;. To
describe the position of the shower in the CAL, an observable is defined. It uses the CAL
reconstructed energy centroid. The centroid is defined as the mean of the reconstructed
shower position in each crystal, weighted by the crystal energy. In each crystal, the position
is reconstructed using the light taper (30% for one crystal, end-to-end). Dcracs is the distance
to vertical edges of the tower containing the centroid. It ranges from 0 mm, outside the CAL
crystals to 187.25 mm, the core of the tower. For Di.aqs € [0 mm, 22 mm], the centroid sits
outside the active material in the tower. This is the tower gap. For D ,as > 34 mm, its sits
at least half a crystal width away from the gap, inside the layers of crystal. Anything below
34 mm is characteristic of an event crossing two towers. In such a case, part of the shower
developped outside the active material in the CAL, not registering in @).,.

The effect of lateral energy leaks on shower containment is illustrated in Fig. 1 which
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shows this parameter versus D..us- Tower gaps are responsible for the dramatic loss in
shower containment at D..us = 34mm. The gaps affect the showers for about 1 Rj,;.
Cracks in between crystals are responsible for the less dramatic loss in shower containment;
this feature quickly disappears with increasing 6 and is ignored. As can be seen, the shower
containment quickly stabilises to about 0.65, 1 R, inside the active part of the CAL. Above
60 to 80 mm, the lateral leaks are negligeable.

This method does not directly correct for loss in shower containment visible below 80 mm.
Because the crystal width is comparable to R);, the core of the shower fits into two or three
crystals. Such a coarse sampling, illustrated in Fig. 1, means that little information is to be
had from the lateral profiles and as such on the importance of lateral leaks. Although other
methods, such as CalFullProfile [2], try to quantify these by using the radial profile, this one
does not. As a result, the effect of tower gaps is to smear any correlations between the LAT
observables and the Monte-Carlo truths. It drasticly lowers the amount of information in
the LAT observables. For this reason, this method defines various event classes, based on
geometric cuts, for different qualities of events. This will be shown in section 4. Until then,
figures are created with events for which containement is not affected by the tower gaps.

2.2 Longitudinal Shower Parameters

The longitudinal developpment of showers will also affect the measure of (),. Mainly
two effects can be observed. Showers may not extend up to the CAL because of the matter
upstream, the TKR. This is the case for low energy photons. Shower may also extend too
far, in which case leaks occur through the bottom of the CAL. Fig. 2 shows the transition
from one regime to the other. It occurs around 2 GeV. At that energy, for on-axis photons,
about 5% of shower energy will escape through the bottom of the CAL. Because of this, the
observable (), is not an effective measurement to estimate F,. The reconstruction corrects
for these leaks by defining a new observable X . This is shown in section 3.1.
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Figure 3: probability distributions for (), with 6 = 32°.

3 Creating the PDFs

The definition of the X observable is given in section 3.1. It must be optimised, this is
shown in section 3.2. Finally, defining an estimation of the X; PDFs is done in section 3.3.

3.1 A new observable: X

The most straight-forward measure of a photon’s primary energy is (). A reconstruction
method using this sole observable would have at best a resolution equal to the variance of the
Q. distribution at that energy. Fig. 3 shows shower containment distributions, normalised so
as to behave like a probability distribution, for photons with a 32 ° incidence at 300 MeV, 1, 5,
10, and 50 GeV. Because of the longitudinal effects described in section 1, these distributions
have varying tails and RMS depending on £,. Thus the response function is non gaussian.
Furthermore, the most probable values (MPV) don’t have the same values, affecting the
linearity of the response function. The last layer method [8][7], of which this method is an
extension, defines a new observable X, for which the same probability distributions will have
lower RMS as well as a greater linearity.

The variance of the (), distribution at a fixed £, value results from the fluctuations in
the development of the shower. Even with the same starting point in the TKR, direction and
initial energy, showers may not develop strictly in the same way, losing a varying amount
of energy in the TKR, leaking different amounts of energy through the CAL bottom. The
variance of (), due to this effect may be corrected using other observables which will correlate
positively with the missing energy. Such observables should correspondingly anti-correlate
with @),. In such a way, an event with (), fluctuating to lower energies will be corrected by
the observables as, generally, these will correspondingly fluctuate to higher values.

In order to correct for the energy leaked through the bottom of the CAL, the last layer
method [8] used ¢;, the energy deposit in the CAL’s last layer. Hereafter we will define the
energy deposited in the i-th layer as ¢;. Note that X¢, = (). ¢7 is correlated to the energy
loss through the bottom of the CAL, this as long as the shower maximum has been reached
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Figure 4: (@Q, versus ¢, for E, =
10GeV, § = 32°, events at the center
of the tower, and vertexes in the bot-
tom of the TKR. The red curve is the
@, distribution. This shows a clear anti-
correlation between fluctuations in (),and

Figure 5: @), versus Hrggr, for E, =
1GeV, 6 = 49°, events at the center of
the tower, and vertexes in the bottom of
the TKR. The missing energy and the
number of TKR hits clearly correlate.

fluctuations in g¢;.

inside the CAL. After the shower maximum, the electron population is very much at the
critical energy (E. = 30 MeV in Csl). In other words energy deposit in the last layer happens
for a decreasing population of electrons with a similar energy. g7 is thus characteristic of
the number of electrons leaving the CAL. Thus g7 is proportional to the energy leak. This
anti-correlation is illustrated on Fig. 4 for 10 GeV photons. The curve is the distribution of
(.. It shows how the events in the tail of that distribution correspond to higher g; values.
adding g7 to @), should thus result in the lower tail of the (),distribution catching up with
its core. This should improve both the distribution’s width and its asymetry. The last layer
method used @), + a - g7, where the paramater o was optimized to correlate with the energy
leak.

The last layer method worked only for £, > 1GeV, below which there are no leaks
through the bottom of the CAL to correct for. The present method adds another term to
the previous expression to obtain:

Xy =Qy+a-qg;+ - Hrxr (1)

where Hrkg is the number of hit strips in the TKR. Especially for low energy photons, the
energy absorbed by the TKR can be an important fraction of the energy missing in the CAL.
The method will correct for this by applying a correction factor to the energy in the CAL
times the number of hit strips. Fig. 5 shows such a correlation, again for a given photon
energy and direction. As before, events in the tail of the ), distribution correspond to higher
HTKR values.

3.2 Optimizing the Weights
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Optimising one Weight The impact of the weights upon the X variance, for a fixed E,
value, will now be presented. The optimization of the weights is performed by extensively
calculating the effect of the weights over a certain range and the best value chosen from
there. This is shown for 300 MeV and 10 GeV and 6 = 32°, for the partial sums:

Q(z) = Qy + = - Hrkr (2)

and
Qz) =Q, +x-q (3)

respectively on Fig. 6 and 7. The resolution is estimated as the full-width-half-maximum
(FWHM) of the Q distributions, normalised to the position of their maximum , i.e. 0q =
%N(Ig‘?)(az), as a function of z, on Fig. 8 and 9. The error bars report the FWHM. The
optimal weight corresponds to the minima on Fig. 8 and 9.

Looking the distributions on Fig. 10 and 11, these are the same as the previous ones
on Fig. 8 and 9 respectively, only with their MPV normalised to 1. We now have Q(z) =
ﬁ@(x) The optimization could now be carried out by estimating the FWHMSs directly
from there. In fact, rather than calculating the dispersion of the events as a function of x,
the approach is to measure the quality of the reconstruction as a function of x. This is done
in the same manner as in the reconstruction analysis performed by W. Atwood (see [1]). In
this analysis, the quality of a reconstruction method is defined, for a given configuration, as
the number of events with the reconstructed energy (E.) within an accepted range of their
Monte-Carlo truth. This number is normalised to the total number of entries. As such the
value is the probability for the reconstruction of being correct. The optimal reconstruction
algorithm is the one with the highest probability. In the present case, every different weight
can be considered a different reconstruction. Note that this is not a true reconstruction as
an unbiasing mechanism has yet to be put in place. We are for the moment only interested
in reducing the variance. The accepted range of good events, or quality cut, is materialised
by the horizontal dotted lines on Fig. 10 and 11. The number of counts in between them,
the number of events making the cut, is shown as a red curve on either figures. This count
curve is thereafter refered to as Ng(x). The MPV, the optimal x value, is used as o and 3
in equations 3 and 2: a or 3. The corresponding Q(«), Q(3) distributions have the smallest
variance, as illustrated on the corresponding figures. The range, the width between the lines,
is estimated recursively as the RMS of the Q(z) distributions around the optimal value as
follows:

1. Projection of the Q(x) distributions on the y-axis. The range is its RMS. A first Ng(z)
is produced with it and an estimation x; of the best value found.

2. Projection of the Q(z) distributions on the y-axis, for # € [#; — 0.1,2; + 0.1]. The
range is its RMS. A second Ng(x) is produced and either a or [ is found.

Note that between the initial definition of the weights using Ng and the final one using
Ng, their value may somewhat vary. On Fig. 6, using cq we have § = 0.82. Yet the final
result, on Fig. 10, using Ng, has 8 = 1.2. This is due to the asymetry of the Q distributions
which is not taken into account similarly for both definitions.
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Figure 12: x versus F, for various angles.
The transition from the £, range where
Hryr has an impact (k < 0.) on the vari-
ance to the one where ¢; does (k > 0.) is
visible.

The optimization of the weights must be performed on a large number of event classes
(see section 4). Becauses of this, a large amount of events must be simulated. In order
to reduce the necessary statistics, a refinement is performed on the estimation of Ng(z).
Mathematically, for one Q(x) distribution, counting up the events within the said range
corresponds to integrating that distribution using a step function for a kernel. A further
improvement is to use a gaussian. In this way, all events are taken into account, if not with
the same importance. It therefore removes the noise due to random bunching of events. This
results in a smoother counting curve. This is actually the red distributions on Fig. 10 and
11. The width of the gaussian is estimated recursively as previously stated.

Optimising both Weights As pointed out in section 2, the Hrkgr and ¢; observables are
efficient in different energy ranges. The advantage of optimizing for both observables at the
same time is that it removes the need to select between 2 reconstructions (one for Hrgg,
one for ¢;). Also, there could not be a smoother mechanism to translate from one range
where Hrkg is efficient to one where ¢; is, ranges which actually overlap. Fig. 12 illustrates
the translation from one correction to the other. A, = FWHM(z = 0.) — FWHM(«)
is the gain in distribution widths obtained applying the ¢; correction. Ap,,,. is its Hrxgr
equivalent. Thus the asymetry x = w indicates the strength of one correction versus
the other. The transition occurs for the raTcIi((l; equal to 0.

The optimization is carried out for both correlation parameters ¢; and Hrgkg, in that
order for high energies, in the other for low energies. In other words, in the case of high
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energies, the optimization is carried out using the distributions:

Q("L‘) = Qv +x-q7 (4)
then
Q) =Qy+a-q+x-Hrgr (5)

In this way, results can only be improved the second time around. Although this not a
true 2-dimensional minimisation, it is expected that ¢; and Hrkgr are physically sufficiently
uncorrelated for the calculated values to sit close to the absolute minimum. This process is
illustrated for 10 GeV, 32° photons in:

e Figs.14, 16 and 18, for ¢;.

e Figs.15, 17 and 19, for Hrkg.

The overlap between ranges of usefulness for Hrkr and g7 is visible on Fig. 13. It shows the
%(w) - E, curves for increasing energies. Q corresponds to the distributions:

e For solid lines, iteration with Hrkg:

— For £, <1GeV: Q(z) = Qy + x - Hrkr-
— For E, > 1GeV: Q(z) =Q,+ o g7 + = - Hrkg.

e For dotted lines, iteration with ¢;:

— For £, <1GeV: Q(z) =Q + - Hrgr + 7 - qr.
— For E, > 1GeV: Q(z) =Q,+ - ¢7.

The observables are efficient when a minimum is apparent in their corresponding curve.
When dotted and solid lines meet, one of the iteration returns @ = 0 or 3 = 0. For instance,
no variance reduction is observed using Hrkgr above 30 GeV and using ¢; below 30 GeV.
This is not so at 30 GeV.

3.3 Defining the X; PDF

Once the optimization has been carried out, precise X distributions can be calculated
for discrete Monte-Carlo energies. These distributions can be normalised to the number of
entries and characterized using lognormal functions. This done, the PDFs are completely
defined by the following tabulated parameters:

e Occupancy (Cp,p): percentage of events making the PDF class amongs all Monte-Carlo
events with a TKR trigger and reconstructed direction.

e 3 and «, defining X.

e Lognormal parameters: norm (N), MPV (u), width (o), tail (7) parameters.
10



0.9-
5 O-9F - 160 E
0.8 M 140E
E -
< F . g . £
0.9 —0 0.7 - g
S E g 1200
§ —26° K
0.8 -37° B ‘ 100
r 45 ° F 80
[ o o E
07 49 b 60
06: 40
C 20
0.5 PR N RN RN BN BT A o
r % 0.020.040.06 0.08 0.1 0.120.14 0.16
r q/E,
0all v vl e

0.02 0.04 0.06 0.08 0.1 0.12 614‘

/ey Figure 21: ¢, versus ¢; for E, =
100 GeV, 6 = 45°. The color bar indi-
cates the mean D, .4 value. The corre-
lation between (), and ¢; varying from
positive to negative values, can be char-

acterized using D acks-

Figure 20: ¢, versus ¢; for £, = 10 GeV
and Dgpaes > 100mm , at different angles
from the vertical.

The lognormal is defined in appendix D:

Previously, the weights were estimated with respect to ., and cosf and their behavior
parametrised using a single function (see [8], appendix A). Rather than finding different
functions to globally parametrise each and every parameter in the table, it was thought
simpler to estimate the PDFs in between calculated ., values using a linear interpolation of
the tables. As will be seen in section 4, this interpolation is in fact 2-dimensional, running on
tables calculated at discrete £, and cos # values. The PDFs are estimated as Cp,,-logN(X ),
with all parameters in the tables depending on Ev and cos @ (reconstructed values for E,
and cos6): the interpolations is performed for these reconstruction values.

4 Defining Classes of Events

Photons may impact on the LAT from any direction. Yet as shown on Fig. 20 for 10 GeV
photons, the correlations may vary greatly with the incoming angle. Cracks in between
the LAT towers add another challenge in the correct calculation of the correlations. Fig. 21
shows how this correlation is affected by Dacks- In order to deal with this large phase-space,
classes of events are created. For each of them, weights are optimized as explained in section
3.2. These classes should be defined using different parameters for the longitudinal and the
lateral shower development (see section 2). Such parameters are described in subsections 4.1
and 4.2 respectively. The results are summarized in subsection 4.3.
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4.1 Longitudinal Shower Parameters

The main longitudinal parameter is the axis along which the shower develops. This is
simply the photon direction. The present method does not reconstruct this variable. Rather
it relies on the reconstrution performed by the TKR. It is taken into account by running the
optimizations at discrete angles to the vertical. 6 is not used to define the different classes:
as previously mentioned, one PDF is created per class, and, just as for £, the PDF is made
dependent upon the angle through an interpolation. Yet # alone is insufficient to completly
describe the mean longitudinal profile.

The mean longitudinal profile of a shower may be described using a gamma function [5].
When the depth is measured in units of radiation length, the two parameters of that function
depend only on E,(The radiation lengths itself depends solely on the atomic composition of
the detector [6]). This means that for given E,-fixing the shower shape- and 6 -fixing the
shower axis- the longitudinal sampling of the shower is fully described using the starting point
of the shower. In other words, it will fully characterize the energy lost up- and dowstream
of the CAL. This in turn means that the a and  parameters will also be affected by Z,Y. To
take this into account, the method uses the reconstructed primary vertex’s height Zq,. Fig. 22
shows the strong dependance of energy distributions in the CAL, affecting both MPVs and
spreads, depending on Z, for a given photon energy and direction. Close to the CAL, little
energy is lost to the TKR and the distribution has both a higher MPV and lower spread
than for higher vertexes.

The variance reduction, using this observable, could be performed in a manner similar to
the one for ¢; and Hrggr: adding -~ - Z, to equation 5. Yet this would not take into account
the o and (8 dependency in Zv. In order to do so the latter weights are rather independently
optimized for each and every Hrggrvalue. Since the TKR is composed of planes of Si strips,
the latter observable sports roughly discrete values.

As should be expected, for a fixed photon energy E,, Hrkr increases with Zy. Yet,
Hrggr can still be used for variance reduction. In other words, although the mean Hrkr
12
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Figure 23: CAL total energy deposition
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value increases with Z.,, at a given vertex altitude there are still some fluctuations in shower
development, thus energy deposition fluctuations in the TKR. These are positively correlated
to Hrkr and justify its use in equation 5. In fact, Fig. 5 showing Hrkgr versus (), was created
for Z7 ~ 420 mm. Fig. 5 showing ¢; versus (), was created for Zy ~ 110 mm.

4.2 Lateral Shower Parameters

Considering on-axis photons, as shown in Fig. 2, two regimes are possible. At lower
energies, the only leaks from the CAL occur through the sides of the towers. At higher
energies, leaks through the bottom of the CAL also occur. Yet, at high incidence, the situ-
ation remains similar because lateral leaks need only lateral shower parameters to describe
them; and much the same is true for longitudinal leaks. The problem becomes complex for
off-axis photons. Then both longitudinal and lateral leaks should be described using both
longitudinal and lateral shower parameters.

Low Energies: E7< 3GeV. Dealing with lateral leaks requires some sort of knowledge
of the lateral energy profile. As pointed out such information is scarce if not non-existent
at lower energies. For this reason, the lateral leaks are estimated relying completely on the
position and direction reconstructed by the tracker. The parameter used is the sum of the
lateral distance of the track to the tower edge, weighted by the energy in the present layer:

o fpath distance(tower gap) - q; ©)
LE = Q. - pathlength

A normalisation factor is applied so that the parameter ranges between 0 and 1. This pa-

rameter is somewhat similar to the parameter D, described further down, yet correlating
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in a more straightforward fashion with the ), distribution widths. Fig. 23 shows the @,
distribution versus this parameter. Cuts are defined on this parameter which depend neither
on E., nor on cos . The ranges are, in decreasing order of quality:

o Cr1: Crg > .65: best.

o (9t 4 < Crp < .65

o (i3t 25 <(Crp< 4

o Cry: 15 < Crp < .25: worse.

o (15 Cpp < .15: rejected.

High Energies, High Incidence: EW > 700MeV and 6 > 18°. In this regime the
energy leaking through the bottom of the CAL should not be ignored. Yet lateral leaks
will affect the shower development. For this reason finer cuts are produced using the two
parameters describing the energy centroid in the CAL:

e D..ks: the centroid’s lateral distance to the tower edge.

o Zcar: height of the centroid in the CAL.

Fig. 24 shows the distribution for the two parameters. The color code shows the mean energy
deposit in the CAL as a function of the two. Using these, different event populations can be
considered. They are displayed on Fig. 25 as a function of D ,qs and Zoar:

e populations fully in the center (Popey. in mauve open circles, and Popgpe; in blue
inverted triangles): there are basically no lateral leaks. The reconstruction will distin-
guish between two such populations, fully and somewhat off-center, simply to improve
the error estimation.

e populations off-center with a Zcay, nearer to the bottom (Poppotiom in green triangles):
it corresponds to cross-towers events or those missing the first layers, and in any case
with a large amount of their energy deposit in the last layer.

e populations off-center with a Zc,p, nearer to the top (Pops, in red squares): it cor-
responds to events missing the last layers. These have very low energy deposits in
the CAL, almost none in the last layer. They cannot be reconstructed well using the
present method.

e any event left out from these populations is rejected (Pop;cjectea in black filled circles).

g7 is also used to fully distinguish these populations, as visible on Fig. 28.

The main point in this division of the phase-space is the separation of sets of events with
comparable behavior for (), and ¢;. Fig. 26 shows how these cuts divide the (), versus g7
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space. The (), and ¢; distributions are displayed independently on Fig. 27 and 28. These
two distributions show that the classes are efficient in distinguishing these populations. This
has a direct impact on the method’s resolution.

The calibration of these populations is done by characterizing distributions for g7, Zcar
and D, using the lognormal function. The class cut on these parameters are then es-
timated as a distance to their most probable value. This distance is calculated using the
lognormal’s cumulative distribution and thus taking into account the distributions’asymetry.
The exact algorithm to determine the populations was defined through extensive trial and
error on a wide range of F, and cos ¢ values. Cuts were found that:

1. isolated the best events, Pop.,re and Popgpei;-

2. separated the remaining events homogeneously as regarding the ¢; distributions.
For information, the distributions and the cuts they yield are:

e The Zcar, and g7 distributions for events in the center of the tower, yielding all cuts
on these parameters.

e The D . distribution for events with low Zcar, yielding a D aqs cut value between
Popeore and Popgpe. This demarquation line is visible on Fig. 25.

e The D, . distribution for events with high energy deposit with Zcap, in the Popgen
range, yielding a D, cut value between Popgpen and Poppottom as well as Popgpen
and Pop;e.

e The D, distribution for events with low energy deposit with Zga;, ouside the
Popgpen range, yielding a Degracks cut value between Popgnen and Poppottom 0T POPigp,
closer to the tower edge.

High Energies, Low Incidence: EA, > 700MeV and 0 < 26°. At low incidence, the
Zcar, parameter becomes meaningless regarding lateral leaks whereas the D, tends to-
wards the C'pp parameter. For this reason, above 1.5 GeV, the reconstruction will use either
sets of parameters depending on the energy:

e 0 <26°: use CLE-

e 0 > 18° use Dgracks, ZCAL, G7-

4.3 Class Definition Conclusion

Classes can be regrouped hierarchically into:

1. 3 major sets, depending on the photon values for £ and cos 6.
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e Low energy: < 3GeV. It uses the lateral parameter C .
e High energy, low incidence: E,Y > 1.5GeV, 0 < 26°, using Crp

e High energy, high incidence: EA, > 700 MeV, 0> 18 °, using Depacks and Zcap, and
qr-

2. 4 subsets defined using the major sets’ respective lateral parameters.

3. 1 set of 16 classes, depending on the value of Zy

This hierarchy is reflected in GlastRelease code, starting in the second installment of the
CalLikelihoodTool in the CalRecon package (Not yet committed at the percent time).

For each and every one of these classes, a PDF is created. In principle, it should be
possible to calculate one single PDF which would depend not only on E, and cos ¢ but also
on the other shower parameters mentioned in this section. In practice, this would require
running the optimization on a very fine shower parameter grid. In other words it would
necessitate considerable amounts of simulated events. The corollary of this is that, as we
have a coarse grid - only 4 different classes - the PDFs are somewhat imprecise. This is why,
in the reconstruction, they will be considered independently. This will particularly affect the
efficiency of the error parameter returned by the reconstruction.

On their overlap "low energy" and "high energy, low incidence" have rigorously the same
PDFs. As such, they return the same result. This is necessary because PDFs are defined for
a given range, [Eé”m, Ef/”‘”], and an error estimation cannot be carried out when Ev is too
close to either )™ or E}*.

5 The Reconstruction

The reconstruction is based on a maximum likelihood, using the PDFs as defined in
paragraphs 3.2 and 4. The principles for the maximum likelihood are discussed in section 5.1
as well as its advantages compared to the method used previous in the previous last layer
tool. Subsection 5.2 illustrates the reconstruction for 1 event. Finally the performance of
the reconstruction is explored in subsection 5.3.

5.1 The Maximum-Likelihood Principles

The method described here relies on the probability density function of one GLAST ob-
servable. The idea is to make extensive use of the GLAST detector simulation to accurately
describe the PDF. The simulation includes both the physics, relying on the GEANT4 simu-
lator, and the off-line reconstruction algorithms. The advantage of such a method is to factor
in awkward detector effects which cannot easily be described in an analytic fashion. These
range from a detector geometry, at odds with that of the electromagnetic showers it measures,
to systematics in the detector calibration or TKR reconstruction. Another advantage is that
such a method can be made to rely on the shape of observable distributions rather than their
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mean value. Mainly, correlations are made not between mean values but between their most
probable value, with an implicit correction for distribution asymetries. This depends on the
method providing the calibration of the function, discussed in section 3.2.

The PDFs for the present reconstruction methods are given by the distributions of the
observable X, defined in equation 1. Each distribution is the probability distribution of the
X1, for photons with a given energy and angle to the vertical, inside a defined section Pop,
of the GLAST phase-space, corresponding to a particular class of events; x can either be top,
bottom, shell or core. These distributions are weighted by the ratio of events making the
class cuts to those that don’t, at a specific E£,. Thus they are the product of two probabilities:

PDF() = P(Xy, | event € Pop,)P(event € Pop, | E, && cosf) (7)
We assume that the product becomes:
PDF() = P(Xy | event € Pop, && E, && cosf) (8)
Using these, we may then calculate the probability:

P(E, | cosf&& X1, && event € Pop,) 9)

The parametrisation of the PDFs is explained in section 3.3. The reconstructed energy
for one PDF is the one maximising that probability. As, in the reconstruction, the photon
energy is the only free parameter of the probability, finding the maximum is a simple process.
An error can be estimated by returning the full-width-half-maximum (FWHM) of the dis-

tribution PDF(E,). This information is an effective quality indicator of this reconstruction,
as will be shown in subsection 5.3.

The advantages of this method are twofold compared to the previous one. The latter was
a simple recursive estimation:

E)=Qy+o(Qy) - ar (10)
El=Qy+a(E)) - qr (11)

Two iterations at least were necessary. Although such a method reduces the bias, it does
so at the expense of the resolution. Also, it cannot provide with an error as the maximum
likelihood can. An additionnal bonus of the maximum likelihood is, as shown previously, the
possibility of choosing the best solution between different classes.

5.2 Event reconstruction

As seen in section 4, a great number of PDFs are constructed, each of them for a different
section of the LAT phase-space. It was not deemed possible to create one global PDF from
all of these because of the coarse graining of the phase-space the classes represent. Yet the
class cuts were shown to vary depending on the photon energy, that which we are looking
for. This means that an event may qualify for a number of PDFs. The selection criteria are
the following :
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Figure 30: PDFs from the Figure 31: PDFs from the
"high energy, low incidence" "high energy, high incidence"
major class set. major class set.

Figure 29: PDFs from the
"low energy" major class set.

1. PDFs are created for a certain Z,Y range each. When the event Z,Yvalue sits outside the
range, the PDF is rejected.

2. idem for the cosf range.

3. PDFs are defined for a certain F, range. PDFs may be rejected for @), too far below
or higher than that range.

4. After calculations, PDFs may return an energy estimation below ),for that event. In
such a case, the PDF is rejected.

Calculations are carried out for each PDF. Verifications are made that the PDFs from the
"hight energy, low incidence" major set pass the cuts on Zgar, and Dgpacs Which depend on
the energy they return. The PDF having the highest probability amongst those passing all
their cuts is returned. It may happen that only PDFs from the "hight energy, low incidence"
major set qualifies, yet none of these return an energy for which Zcar, and Deaqs pass the
corresponding cuts. In this case, the PDF with the highest probability is still returned.

Let us consider a photon with parameters:

E, =15GeV
o0 =0=24°

e 7, =420.mm (this is a thin tray).

Q,=12GeV = 0.8+ E,

g7 = .09GeV = 0.06 * E,

Hyxr = 148
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[ ] ZCAL = —128 mm
i Dcracks = 140 mm

e Crp=0.28

Such a photon would qualify for all 3 major sets, 192 PDFs, described in section 4.3.
From among these PDFs, only 12 qualify for the Z,Y = 420 mm criterium. They are reported
in Fig. 31, 29 and 30, for the "high energy, low incidence", "low energy" and "high energy,
high incidence" major sets respectively (Note that the y-axis range is different). On each
of these are the PDFs for all subsets. The color coding is the one given for the different
populations in section 4.2. From best to worst, we have:

e in mauve: Pop.,.. for Fig. 31, Cp; for Fig. 29 and 30.
e in blue: Popgey for Fig. 31, Cps for Fig. 29 and 30.
e in green: Popyoiom for Fig. 31, C'ps for Fig. 29 and 30.
e in red: Poppoiom for Fig. 31, Cp4 for Fig. 29 and 30.

Dotted lines show those PDFs for which the cuts on either Crg or Zcar, and D acks are not
met. Thus only the mauve PDFs qualify for the final selection (Only one line is in theory
calculated for major sets represented on Fig. 29 and 30. The dotted lines are only here
for illustration purposes). The reconstruted value is the MPV with the highest peak: this
is the mauve population for Fig. 31. The reconstructed energy is 1.544 GeV. Fig. 30 and
Fig. 29 are similar since they are produced with rigorously the same classes and tables on
their energy range overlap, as pointed out in 4.3. The PDFs on Fig. 30 are not defined for
energies below 1.5 GeV, and therefore the corresponding curves are cut off at that energy.

Once a PDF has been chosen, an error estimation, its FWHM, can also be returned.
In this case the FWHM from the mauve curve on Fig. 31 is returned: 4.1%. As a PDF
is defined on an energy range: [E}", E}/**], we must have both min and max FWHM
values inside that range for an estimation to be carried out. It may happen that one of the
values is not found. In this case, the curve selected by the reconstruction would have been
truncated on either the low or the high energy side, as in Fig. 30, but never both; this is
simply because the PDF energy range is sufficiently large. When only either the max or the
min is inside the range, an estimation on the other one is still carried out. It is based on
the idea that there is a sub-range [E})™ EMe!] c [} EMer] for which the FWHM
is always defined. The trick is then to find the value nyv “v closest to its true value @,
such that, without changing any other observable, the corresponding reconstructed energy
be inside that sub-range: ENev ¢ (eIt gpMertl] - The missing half of the FWHM range
is estimated for the value Q°.

5.3 Performance

Results are described separately for photons with their primary reconstructed vertexes in
the thin or thick strips. On axis, they represent respectively 60 and 40% of TKR recontructed
20
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a(GeV) b c
0°<6<22° | 540£0.21 3.99+£0.55 0.75£0.05
22° <0 <31°|562+£0.16 3.79+0.43 0.65=+0.05
31° <6 <38°|592+0.17 3.46+0.49 0.60=+0.07
38° <0 <45° | 5.70£0.17 3.38+£0.52 0.46 +0.12
45° <0 <50° | 5.81£0.17 3.08£0.57 0.36 £0.19

Table 1: Resolution parameters for the thin strips.

a(GeV) b c
0°<6<22° | 312£0.10 5.25+£0.17 0.86+0.01
22° <0 <31°|341+£0.04 4.62+0.08 0.75+0.01
31° <0 <38°|4.02+£0.08 4.06+0.17 0.67+0.02
38° <0 <45° | 497+£0.22 3.52+0.58 0.61+0.08
45° <0 <50° [ 4.90+£0.17 3.55+£0.45 0.53+0.09

Table 2: Resolution parameters for the thick strips.

events. The cuts applied are (), > 10MeV. The events are generated using GlastRelease
v7r2 for an all gamma source. Energies range from 20 MeV to 300 GeV. The figures discussed
next show the resolution, bias and tail parameters as a function of Monte-Carlo energy on
the x-axis and the angle to the vertical on the y-axis.

Bias, Resolution and Tails: The method’s resolution is shown on Fig. 34 and Fig. 35.
The resolutions are defined as the lognormal width o (see equation 14), with the lognormal

fitted to the g—: distributions. These results are parametrised using the function :

o(E) a?
RSy Sy S o 12
i g ot (12)

These terms correspond to:

1. A stochastic term corresponding to the fluctuations in shower depth for a same photon
energy.

2. A constant term related to instrumental effects, not depending on the photon energy.

3. A high energy term, resulting from the energy leaks through the bottom of the CAL.

The fit parameters and their error are reported in tables 1 and 2 for thin and thick strips
respectively. The parametrisation if correct for an energy scale in GeV.

The first two terms are classic features of calorimetry resolution. The parameter a is
expected to be in the 5-20% range [4]. In our case, a ~ 5%, although the last term in the
equation, which is not a classic feature, does affect these values. This term is important up
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the GeV range. The second term, describing instrumental effects, is also in the expected
range of b ~ 4%. This term is significant for energies in the GeV range. This explains why
it is greater for photons materializing in thick rather than thin strips. A third term used
in reference [4] (Eq. 14) does not appear in our parametrisation. This term corresponds to
noise in the photo-multipliers, photodiodes or equivalent apparatuses, and is parametrized
by E~2 in the quadratic sum. In the case of the CAL photodiodes, it should be negligeable
compared to the other terms. Including it in Eq. 12 resulted in overfitting, with akward
values and errors for the amplitude of this term. It was thus discarded. The last term in
Eq. 12 is not present in reference [4]. It describes energy leaks occuring through the bottom
of the CAL. More often than not, earth-based calorimeters can be made thick enough that
such leaks never become the dominant features in resolution. This is not the case here. We
describe it here using a power law.

Results from thes figures can be summarized as follows:

e The resolution is best off-axis (> 10°) and for energies beyond 1 GeV. This is where
energy leaks are the least important.

e For low energy photons (< 200MeV), the resolution is particularly poor. In this
case, little or none of the shower actually reaches the CAL. For the same reason, the
resolution quickly deteriorates with increasing incidence.

e For high energy photons (> 10 GeV), the resolution improves with increasing incidence.
In this range, the most important leaks occur through the bottom of the CAL. They
become negligeable at very high incidence. For instance, for thin tray, Pop.... photons
around E, = 50GeV, § = 32°, the energy deposit is 88 % of the photon energy, and
its variance is already as low as 3.5%. In this case, the method is effectively de-biasing
the @), value.

Biases are displayed in Fig. 32 and Fig. 33. They are of the order of 1%. The large
amounts are due to low event counts and incorrect fits.

Lognormal tail parameters visible in Fig. 36 and Fig. 37 are negative, mostly around -0.4,
meaning that the dominant tail in the reconstruction is toward the low energies.

Error Estimator: The PDF FWHM, normalised to the reconstructed energy, is returned
as an error estimation. Fig. 38 shows how it correlates with the resolution. On the y-axis
is the distance to the Monte-Carlo truth in %. On the bottom axis is the error estimation.
Black error bars indicate the mean bias and the spread of the distribution. The spreads
are reported in Fig. 39 as a function of the error estimation. Dominant low-energy tails in
the reconstruction result in the mean biases on Fig. 38 being negative. The different classes
of events are visible as agglomerations on the graph. This means that the error estimation
is strongly dependant on the class of events. Thus, the efficiency of this parameter relies
heavily on a correct calibration of the different class parameters.

This error estimation is not a 68% confidence interval, the error estimation normaly
assiciated to a maximum likelihood. It has in fact no true statistical meaning. Nonetheless,
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Fig. 39 shows that it may still be relevent for dertermining the quality of an event. In theory,
it should be possible to determine a 68% confidence interval. Yet technical difficulties occcur

because the PDFs are only known on a certain range. This is the reason for returning the
FWHM.

Effective Area: The procedure for estimating the effective area (Aeff) is explained in
appendix C. In short, the LAT horizontal area is cut up in tiles. Aeff is the sum of the
tiles’area weighted by the ratio of "good" to all events in the tile. Good events are defined
as the ones passing all of the following cuts:

e Onboard filter status is nill, i.e. event was not rejected.

e At least one reconstructed track in the TKR.
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e (), > 10MeV.

. |%\ < 0. The latter parameter is defined as 0 = 0.1 on Fig. 40, 6 = 0.5 on Fig. 41.

N

The fall in efficiency for 8 > 45° is due to limited range in which this method is valid.
It otherwise follows a curve similar to the shower containment, see Fig. 2. The same in-
terpretation is valid. At low energies < 100 MeV, the TKR absorbs the shower before it
reaches the CAL. Around 1 GeV, the shower containment is at its highest, all the more so
for higher fs, and the method has a maximum effective area. Above 1GeV, the effective
area slowly droops as the shower increasingly leaks through the bottom of the CAL. The
values in themselves are below 0.8 m? for § = 0.1, and 1.1m? for § = 0.5, somewhat lower
than other methods. Toby Burnett suggested using the logistic function f(z) = oo )
to describe the effective areas |3|. This does not seem indicated here as the droop at higher
energies is much more pronounced for this method.

For the sake of comparison, similar figures are drawn for the two other calorimeter based
reconstruction methods present in the ground software as of GlastRelease v7r2. These are
shown in appendixes A and B (It must be emphasized that not cuts on the quality of the
events are applied).

6 Conclusions

The present note describes the tranformation applied to the the last layer method. An
extension of the variance reduction to low energies was performed using Hrkxgr. An extension
to lower angles was also possible by distinguishing various populations using C'p g for lower
energies (E, < 3GeV) or Zcar, and Dy for higher ones (E, > 0.7GeV). Lastly the
method uses a maximum likelihood algorithm rather than the previous recursive correction.
It has the advantage of returning an unbiased estimation of the energy as well as an error
estimation.

The drawbacks of the method are the same as with the previous intallation. Parameters
must be extensively calculated for discrete Monte-Carlo energies and angles. This means
simulating millions of events is necessary to the calibrations of the method. Another point is
that many of the events are not reconstructed, wether because the calibration was not done
for a particular region of phase-space, or because it was deemed that the method was not
reliable enough. Both these drawbacks could in principle be reduced by yet more extensive
simulations and the creation of finer classes of events.

Extending the method to CAL-only events should be relatively straightforward. In the-
ory, an extension of the method to many failure modes should also be, as their effect will
automatically register through the simulation to the calibration. In practice, it will likely
become necessary to define new classes of events. As mentioned in the introduction, the
photon direction’s azimuthal angle is not directly taken into account. Doing so will improve
the reconstruction for events with their shower close to the cracks. Another extension could
be to refine on the anti-correlation variables used, in particular, by correlating energies regis-

25



tering in crystals or towers neighbouring the cracks, as well as through equivalent observables
in the TKR.
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incomplete gamma function, which represents the mean longitudinal profile.
details, see [2].
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Appendix A: Performance Figures for CalFullProfile.

The CalFullProfile method, returning a value in CalC fpEnergy in the MeritTuple,
estimates the energy by fitting the shower’s longitudinal energy profile in the CAL to an

For further

The method works only for events with (), > 1 GeV. For this method, biases, resolutions
and tail parameters are presented in that order on Fig. 44, 46 and 48 for thin strips, and on
Fig. 45, 47 and 49 for thick strips. The effective area for events are shown on 42 and 43 for

E”| < .1 and |E” E”| < .5 respectively.
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Figure 42:

as a function of energy for \ i

CalFullProfile’s effectlve area
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Figure 43: CalFullProfile’s effective area

7| <.L as a function of energy for | 1
a(GeV) b c
0°<#<22° | 579+£0.60 5.32+0.13 0.75+0.01
22° <@ <31°| 7.8840.69 4.65+0.22 0.71+0.02
31° <6 <38°] 9.184+0.50 4.23+0.20 0.64+0.02
38° <0 <45°110.20£0.26 3.67+0.13 0.59+0.01
45° <6 <50° | 11.38+0.29 3.124+0.18 0.57+£0.02

a(GeV)

b

C

0° <6 <22°

3.30 £ 1.96

6.35 £ 0.21

0.84 £0.01

22° < <31°

5.34 £ 1.04

5.32+0.21

0.81 £ 0.01

31° <6 <38°

7.33 £0.85

4.58 £0.26

0.74 £ 0.02

38° <0 <45°

7.18 £0.51

4.69 £0.15

0.60 + 0.02

45° < 6 < 50°

7.52+0.70

4.32£0.23

0.58 =0.03
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Table 3: CalFullProfile’s resolution parameters for the thin strips.

Table 4: CalFullProfile’s resolution parameters for the thick strips.
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Figure 44: CalFullProfile’s bias for thin
strips.

(%)

T —— 0°<h<2
o cene- <3
..... v 31°<B<3®
-0-e- 38°<B<dR

—a— 45°<f<5(0°

of

10 10’ 10 10

E, (VeV)

Figure 46: CalFullProfile’s resolution for
thin strips.
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Figure 48: CalFullProfile’s tail for thin
strips.
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Figure 45: CalFullProfile’s bias for thick
strips.
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Figure 47: CalFullProfile’s resolution for
thick strips.
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Figure 49: CalFullProfile’s tail for thick
strips.



Appendix B: Performance Figures for the Parametric Method.

The Parametric method, returning a value Evt EnergyCorr in the MeritTuple, estimates
the energy by using the relationship T, = log(%). E. is the critical energy and T,,,, is
the depth in radiation lenght of the shower maximum. The precision and efficiency of the
method relies on a correct estimation of 7},,,, thus a precise understanding of the shower
propagation through the LAT’s different materials in terms of mean radiation lengths.

For this method, biases, resolutions and tail parameters are presented in that order on
Fig. 52, 54 and 56 for thin strips, and on Fig. 53, 55 and 57 for thick strips. The effective

area for events are shown on 50 and 51 for \E”E;fﬂ < .1 and \E”E;WE”\ < .5 respectively.
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Figure 50: Parametric method’s effective
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Figure 51: Parametric method’s effective

area as a function of energy for \EEWE” | < area as a function of energy for \E”E?WE” | <
1. 0.
a(GeV) b c
0°<6<22° | 5954037 5.61+0.84 0.86+0.06
22° <0 <31°|641+0.23 4.30+0.63 0.78+0.05
31°< 0 <38°|6.27+0.26 4.22+0.71 0.67=+0.09
38° < fh<45°(6.20+0.29 4.49+0.79 0.51+0.19
45° <0 <50°|6.62+0.33 4.77+1.54 0.20+1.89
Table 5: Parametric methods’s resolution parameters for the thin strips.
a(GeV) b c
0°<6<22° | 3444023 6.61+0.39 0.92+0.03
22° <0 <31°|4.18+0.17 5.04+0.35 0.85+0.03
31°< 0 <38°|4.74+0.19 420045 0.78£0.04
38° < f <45°|5.01+0.07 440=£0.18 0.6740.02
45° <09 <50°|542+0.10 4.53+0.25 0.5240.06
Table 6: Parametric methods’s resolution parameters for the thick strips.
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Figure 52: Parametric method’s bias for

thin strips.
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Figure 54: Parametric method’s resolu-
tion for thin strips.
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Figure 56: Parametric method’s tail for

thin strips.
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Figure 53: Parametric method’s bias for

thick strips.
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Figure 55: Parametric method’s resolu-

tion for thick strips.
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Figure 57: Parametric method’s tail for

thick strips.



Appendix C: Estimating the Effective Area

The method’s effective area is calculated as a function of E, and 6. The calculations are
performed by counting events going through the horizontal plane z = Omm. The plane is
divided in 40 mm square tiles and separate counts C'(z*,y’) for each one. The counting is
performed twice:

1. All events, whether or not they trigger or even convert in the detector. These events
counts are named C(z¢,%"). Their sum is the number of simulated events.

2. Good events, defined as the ones passing all of the following cuts:

e Onboard filter status is null, i.e. event was not rejected.
e At least one reconstructed track in the TKR.

o (), > 10MeV.
° |—E”];VE”| < 0. The latter parameter is defined as 6 = 0.1 on Fig. 40, 6 = 0.5 on
Fig. 41.

These counts are named C(z?, ).

The ratio of good to all events % is an estimation of the detector efficiency for tile

(x%,y%). This ratio times the tile area is an estimation of the effective area for that tile. The
effective area is then:

Cl',y")
Eff _ ) 2
AR = E Clay) -40 - 40 mm (13)

$Z7y1
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Appendix D:  The Lognormal

Mathematically, a variable X is lognormally distributed when the variable log X is nor-
mally distributed. In practice, the lognormal is a gaussian with an asymetric tail. The
expression used here is somewhat adapted from the mathematical definition:

=2 | 2

logN(z) = N exp (—x ;_T ) (14)
using:

N — 1 sinh (7' log 4)

o021 1y/log4
o (14 )
7=
-

where:

e N is the normalisation term so that [logN = 1.
o 11 is the MPV.
e o is the width. Conveniently, 2.360 is the FWHM.

e 7 is the tail parameter. For 7 = (0 the distribution becomes a gaussian.

The cumultive distribution is:

/x " logNd = Nerf( <x\;;) (15)

using:

erf(z) = %/ ooeXp (—t?) dt

32



