

GCRrecon and GCRselect status

- Description of algorithms and variables
- Simulations and results for C & Mg
- Conclusions

The algorithms

- 2 new algorithms and tools have been implemented in GR v9r3
- The new package is called GCRcalib
 - GCRcalib/v1r1p1/src/GCRRecon/GcrReconAlg(Tool).cxx
 - GCRcalib/v1r1p1/src/GCRSelect/GcrSelectAlg(Tool).cxx
- The algorithms can be called from the JO file:
 - ApplicationMgr.DLLs +={ "CalRecon", "CalUtil", "GCRCalib",...}
 - Cal1.Members = {"CalXtalRecAlg", "CalClustersAlg/first", "GcrReconAlg", "GcrSelectAlg",...}
- The new outputs are:
 - GCRRecon \rightarrow in recon.root:
 - A collection of GcrXtals
 - A GcrTrack
 - GCRSelect → in gcrSelect.root (new ROOT file!):
 - A collection of GcrSelectedXtals
- For detailed information:
 - See updated UML diagram at the end of this presentation
 - Presentations at s/w core meeting next Tuesday

GCRRecon

- Retrieves the following information from TDS:
 - Collection of CalXtalRecData
 - MC true direction as particle direction Dir
 - Will change as soon as TKR recon is adapted to heavy ions
- Propagates Dir into CAL
- Builds 1 GcrTrack (stored in recon.root), containing:
 - CalEntryPoint and CalExitPoint at,
 - Dir (and DirErr=0 for the moment)
- Builds a collection of GcrXtals (stored in recon.root):
 - A GcrXtal is a log crossed by Dir, with a corresponding XtalRecData, with some additional properties:
 - entry and exit points, path-length
 - distance of this segment center to the closest log face
 - crossed faces:
 - defined as an integer = 2²zTop + 2²zBot + 2^xLeft + 2^xRight + 2^yLeft + 2^yRight, where zTop,...yRight=0,...,5 → crossedFaces=3 for top/bottom

GCRSelect

- Retrieves the following information from TDS:
 - Collection of CalXtalRecData
 - Collection of GcrXtals
- **Rejects interactions** with a simple filtering procedure:
 - Builds "2D"-clusters (per layer):
 - A cluster is a set of adjacent hits in one layer, with >100 MeV
 - Requires 1 and only 1 cluster per layer, with at most 2 hits (multiplicity criterium)
 - Onlys keeps the first successive layers (from the top of the CAL), which fulfill the multiplicity criterium
 - Infers also Z from the energy of single cluster in layer 0
 - Not used for the moment, will be needed for study of correlation between layers (heavy ions slowing down, etc...)
- Build a collection of GcrSelectedXtals (stored in gcrSelect.root):
 - In each selected layer, extracts the logs with a corresponding GcrXtal and store them as GcrSelectedXtals
 - same properties as GcrXtals

Simulations of vertical C

GCRcalib VRVS meeting - 21/09/2006

Simulations of vertical C

GCRcalib VRVS meeting - 21/09/2006

Simulations of C at 30 deg

Simulations of C at 30 deg

GCRcalib VRVS meeting - 21/09/2006

Simulations of Mg at 30 deg

GLAST LAT Project

GCRcalib VRVS meeting - 21/09/2006

Simulations of Mg at 30 deg

Conclusions

- Code implemented and running
 - Some cleaning (+comments) still necessary before checking in CVS
 - Simulation procedure (scripts, meta database) in CC IN2P3 (Lyon) is fully operationnal
- First results are encouraging
- Next steps:
 - Simulate larger samples and get more accurate number for efficiencies of each step (using HPSS disk at CC-IN2P3)
 - Simulate heavier ions than Mg
 - Consequences on SC 1 simulation needs ?
- To do (discussion):
 - **TKR**: need for an adapted recon for ions
 - ACD: need for an estimate of Z using the high-energy range of PMs
 - CAL: study energy sequence and correlation between layers kept for calibration (multiplicity criterium)
 - Study heaviest ions slowing down
 - Reject high energy tail of peak

GLAST LAT Project GCRcalib VRVS meeting – 21/09/2006 UML diagram for GCRRecon and GCRSelect

