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We outline techniques for simulating and fitting MSP pulse profiles and present
preliminary results using light curves from the second LAT pulsar catalog.
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Abstract:

Significant gamma-ray pulsations have been detected from ~40 millisecond pulsars (MSPs) using 3 years of sky-survey data from the Fermi LAT and radio timing solutions
from across the globe [5]. We have fit the radio and gamma-ray pulse profiles of these MSPs using geometric versions of slot gap, outer gap, and pair-starved polar cap
gamma-ray emission models and radio cone and core models. For MSPs with radio and gamma-ray peaks aligned in phase we also explore low-altitude slot gap gamma-ray
models and caustic radio models. The best-fit parameters provide constraints on the viewing geometries and emission sites. While the exact pulsar magnetospheric geometry
\ 1s unknown, we can use the increased number of detected gamma-ray MSPs to look for significant trends in the population which average over these uncertainties. /
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Light Curve Simulation and Fitting:

Using the vacuum retarded-dipole magnetic field geometry
[6], we have simulated MSP light curves using geometric
outer gap (OG) [7], slot gap/two-pole caustic (TPC) [8], pair-
starved polar cap (PSPC) [9], and low-altitude slot gap
(1aSG) [10] gamma-ray models with either a single-altitude
hollow-cone and/or core beam [11], altitude-limited TPC/OG
[10], or IaSG radio models. Uniform emissivity, in the co-
rotating frame, 1s assumed along the field lines except in the
1aSG and PSPC simulations.

Gamma-ray profiles are fit using Poisson likelihood and
radio profiles are fit using a ” statistic. We scan over the
model phase space and estimate uncertainties on the best-fit
parameters from either 1- or 2-D likelihood profiles.

Following [10] we sort the observed MSP light curves into
3 model classes.
Class I (26 MSPs): the gamma-ray peaks lag the main radio
component.
Class II (6 MSPs): the gamma-ray and radio components are
aligned 1n phase.
Class III (6 MSPs): the gamma-ray peaks lead the main radio
component.
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example minimum and maximum (R ) emission altitudes.

For all models R <1.2 light cylinder radii but no emission 1s

collected outside the light cylinder.

geometry 1s assumed for both the radio and gamma-
ray beams, possibly with different gap parameters.

Polarization information helps discriminate between different radio models.
The hollow-cone predicts some degree of linear polarization, sense-changing
circular polarization suggests the presence of a core beam, and a lack of
polarization may be indicative of caustic radio emission (alTPC/OG) [10].
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