The hybrid AGN core of 3C 111

Sandra de Jong

François Arago Centre, APC, Université Paris Diderot

31 May 2012

- 4 同 2 4 日 2 4 日 2

э

Active Galactic Nuclei

Pogge, 1989

* Core of active galaxy (<1 pc)
* High luminosity emission at almost every wavelength
* Powered by accreting super massive black hole
* Variety of objects: BL Lac, radio galaxy, Seyfert galaxy etc

AGN in $\gamma\text{-rays}$

Unification of AGN: same central engine Differences in:

- * viewing angle
- * jet presence
- * accretion efficiency
- * black hole mass

Urry & Padovani, 1995 (adapted)

Introduction 3C 111

- * Radio galaxy FRII z=0.049
- * Broad emission lines (optical), iron line (X-rays)
- * Radio: one visible jet with projected size of 78 kpc
- * Recent detection in γ -rays by Fermi/LAT!

Linfield & Perley, 1984

3C 111 in $\gamma\text{-rays}$

* CGRO/EGRET: 3C 111 tentatively associated with a γ -ray source, however outside 99% probability region (Hartman et al., 1999)

* Re-analysis of EGRET data: earlier probability region larger (Sguerra et al. 2005) and likely to be blending of several sources (Hartman et al. 2008)

* Fermi/LAT 1st LAT catalog: 3C 111 is included with a significance of 4.3σ (Abdo et al., 2010)

* Fermi/LAT 2nd LAT catalog: 3C 111 is no longer included (Abdo et al., 2011), but 3C 111 is likely to be variable (Ackermann et al., 2011)

* 24 months of Fermi/LAT data, 3C 111 is detected with ${>}5\sigma$ (Kataoka et al., 2011)

X-ray spectrum SED

3C 111: X-ray spectrum

de Jong et al., 2012 (A&A submitted)

Model: absorbed cut-off power law with Compton reflection and a Gaussian component: $E_{cut} = 227^{+143}_{-67} \text{ keV}$ $R = 0.7 \pm 0.3$ $EW = 85 \pm 11 \text{ eV}$

3C 111: Spectral energy distribution

Model: single zone synchrotron self-Compton

Beckmann & Shrader 2012

Broad band SED of 3C 111 with best-fit model

de Jong et al., 2012 (A&A submitted) Doppler factor $\delta = 14$ Magnetic field B = 0.04G

- ∢ 🗗 ▶

M 87: another $\gamma\text{-ray}$ detected radio galaxy INTEGRAL/JEM-X significance maps

Next up: radio galaxy FRI M 87 (z=0.004)

- * Detection in γ -rays and TeV
- * No detection in hard X-rays!
- * Now: analyse the Fermi/LAT data of M87
- * Next: set an upper limit in hard X-rays with INTEGRAL/ISGRI
- * Goal: model the broadband SED

M87 3-10.2 keV

M87 10.2-25.2 keV

Conclusion

- * The question: how is $\gamma\text{-ray}$ radiation produced in non-blazar AGN?
- * 3C 111: a FRII radio galaxy detected by Fermi/LAT
- * X-ray spectrum: Seyfert-like, dominated by thermal component; iron line and reflection
- * SED: dominated by non-thermal processes; SSC without EC component
- * Solution: hybrid model
- * Next : M 87: a FRI radio galaxy detected by $\mathsf{Fermi}/\mathsf{LAT}$ and in TeV

→ Ξ →