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Outline

I Detection principle: the concept of a pair conversion telescope.
I basic design drivers.

I The Large Area Telescope:
I silicon tracker (TKR);
I electromagnetic calorimeter (CAL);
I anti-coincidence detector (ACD).

I Detection principle revisited.

I Orbital environment.
I (And instrumental pile-up, aka ghost effect.)

I Event triggering and filtering.

I Event-level analysis:
I event reconstruction;
I background rejection.

I Conclusions.

I All is very IRF-oriented!

I There are a few Exercises for you to solve in the following slides.
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Detection principle
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I Pair production is the dominant
interaction process for photons in the LAT
energy range;

I e+e− pair provides the information about
the γ-ray direction/energy;

I e+e− pair provides a clear signature for
background rejection (really?).
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Science design drivers

I Effective area and Point Spread Function:
I thickness and layout of conversion layers;
I PSF also drives the design of the sensors, the spacing of the

detection planes and the overall TKR design.

I Energy range and resolution:
I thickness and design of the calorimeter;

I Field of view:
I determined by the aspect ratio of the instrument;

I Charged particle background rejection:
I mainly drives the ACD design;
I also impacts the TKR and CAL design (which are needed for the

background rejection).
I need for a flexible triggering and event filtering system.
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Mission design drivers

I Launcher type and allocated space:
I maximum possible lateral dimensions of the instruments (i.e.

geometric area);
I about ∼ 1.8 × 1.8 m2 for Fermi (the LAT footprint is actually

∼ 1.5 × 1.5 m2).

I Power budget:
I number of electronics readout channels in the tracker (i.e strip pitch,

number of layers);
I about 650 W overall for Fermi;

I Mass budget:
I essentially limits the total depth of the calorimeter (once the

footprint is fixed);
I 3000 kg for Fermi.

I Telemetry bandwidth:
I need onboard filtering.

I Launch and operation in space:
I sustain the vibrational loads during the launch;
I operate in vacuum, sustain thermal gradients.
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The Large Area Telescope

Large Area telescope

I Overall modular design.

I 4 × 4 array of identical towers (each one including a tracker and a calorimeter module).

I Tracker surrounded by and Anti-Coincidence Detector (ACD).

I “It uses less power than a toaster and we talk to it over a telephone line.” (Bill Atwood)

Tracker

I Silicon strip detectors,
W conversion foils; 1.5
radiation lengths
on-axis.

I ∼ 10k sensors, 73 m2 of
silicon active area,
∼ 1M readout channels.

I High-precision tracking,
short dead time.

Anti-Coincidence Detector

I Segmented (89 tiles) as
to minimize self-veto at
high energy.

I 0.9997 average
detection efficiency.

Calorimeter

I 1536 CsI(Tl) crystal; 8.6 radiation
lengths on-axis.

I Hodoscopic, 3D shower profile
reconstruction for leakage correction.
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Silicon Tracker/Converter (1/2)

I Primary roles:
I convert γ rays into electron/positron pairs;
I main event trigger (more on this later);
I direction reconstruction.

I Also important for:
I background rejection (SSD veto, hit counting);
I energy measurement at low energy (i.e., below a few hundred MeV).

I Use of Silicon Strip Detector (SSD) technology:
I precise tracking with ∼ no detector-induced deadtime;
I self-triggering.

I Key features:
I ∼ 73 m2 of single-sided SSDs (400 µm thickness, 228 µm pitch);
I 884,736 independent readout channels (∼ 200 µW per channel);
I digital readout (plus layer OR time over threshold);
I ∼ 10−6 noise occupancy at the nominal 1/4 of a Minimum Ionizing

Particle (MIP) threshold (providing ∼ 100% detection efficiency).

I Exercise: Estimate the average number of noise hits per event in
the full LAT.
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Silicon Tracker/Converter (2/2)

TKR front section

TKR back section

CAL

0 3% X×12 

0 18% X×4 

 no W×2 

I Tradeoffs in the design of the tracker converter:
I overall thickness of the converter foils: conversion efficiency vs.

multiple scattering (limiting the angular resolution at low energy);
I number and spacing of the planes: energy dependence of the PSF;
I strip pitch: hit resolution vs. power consumption.

I 18 paired x–y layers (∼ 36 cm on a side, spaced by ∼ 3.5 cm) in
two distinct sections:

I front has better PSF and lower background contamination;
I 1.5 X0 on axis—that’s a lot for a tracker!

I Exercise: What’s the maximum off-axis angle the TKR will trigger?
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Electromagnetic Calorimeter (1/2)

I Primary roles:
I energy reconstruction;
I contribution to the event trigger (more on this later);

I Also important for:
I background rejection (shower shape);
I seeding the tracker reconstruction.

I Crystal detector elements:
I 8 layers of 12 CsI(Tl) crystals (27 × 20 × 326 mm3) per tower;
I hodoscopic stacking (alternating orthogonal layers);
I 8.6 X0 on-axis.

I Readout electronics:
I dual PIN photodiode on each crystal end;
I each one processes by two electronics chains (×1, ×8);
I four readout ranges, dynamic range 2 MeV–70 GeV per crystal.

I Exercise: How much energy does a MIP on-axis release in the CAL?

Luca Baldini (INFN and UniPi) Fermi Summer School 2012 9 / 37



Electromagnetic Calorimeter (2/2)

Calorimeter crystal

Positive end

Negative endLarge PIN photodiode

Small PIN photodiode

I CAL xtals with readout at each end:
I measure longitudinal position of the energy deposition from light

asymmetry;
I provide a full 3-dimensional image of the EM shower;

I CAL imaging capabilities are crucial for both background rejection
and energy reconstruction at high energy:

I remember, the LAT is ∼ 10 X0 on axis, so there is a significant
shower leakage out the back of the CAL.

I Exercise: What is the fraction of energy escaping out the back of
the CAL for a 500 GeV photon on-axis?
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Anticoincidence detector

I Primary roles:
I event triggering and onboard filter (more on this later);
I background rejection.

I Also important for:
I identifying heavy ions for CAL calibration purposes.

I One important lesson learned from the previous mission:
I backsplash from the CAL in high-energy event can hit the ACD;
I can cause self-veto, especially for monolithic shields.

I The LAT ACD is segmented:
I 89 tiles (overlapping in one dimension) plus 8 ribbons (covering the

gaps in the other);
I can extrapolate tracks to specific tiles;
I this also makes complete hermeticity more difficult to achieve.
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Long-term trending and stability
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I The LAT shows no significant degradation in time over the first
∼ three years of mission.

I drift of the light yield in the CAL expected from radiation damage.
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A “gold-plated” simulated 360 MeV γ-ray. . .
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Run Id 0  Event Id 2124

AcdTileCount: 0

AcdTotalEnergy: 0.0

CTBBestEnergy: 389.93

CalEnergyRaw: 235.919

CalNumClusters: 1.0

CalNumXtals: 18.0

McEnergy: 360.985

McZDir: 0.761521

TkrNumHits: 41

TkrNumTracks: 2.0

Event topology

I two clear tracks;

I tracks point to energy deposits in
the CAL;

I no ACD hit tiles;

I tracks start in the middle of the
instrument.

Monte Carlo γ-ray direction

TKR hits

CAL hit xtals
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. . . and a “gold-plated” background event
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Run Id 1  Event Id 1074

AcdTileCount: 2

AcdTotalEnergy: 99.429

CTBBestEnergy: 4938.97363281

CalEnergyRaw: 3731.96

CalNumClusters: 4.0

CalNumXtals: 15.0

McEnergy: 89930.4

McZDir: 0.924826

TkrNumHits: 75

TkrNumTracks: 1.0

Event topology

I one track;

I track points to a hit tile in the ACD;

I (with > 25 MIPs signal, so this is
actually a heavy ion);

I track starts in uppermost TKR layer
(i.e., at the edge of the instrument).
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A ∼ 100 MeV simulated γ-ray. . .
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Run Id 0  Event Id 2433

AcdTileCount: 0

AcdTotalEnergy: 0.0

CTBBestEnergy: 80.9972

CalEnergyRaw: 26.978

CalNumClusters: 3.0

CalNumXtals: 6.0

McEnergy: 93.031

McZDir: 0.853183

TkrNumHits: 17

TkrNumTracks: 1.0

Event topology

I no ACD hit tiles (good);

I but this time we only have one
track;

I where’s the other guy (aren’t we
supposed to detect electron-positron
pairs)?
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. . . and a ∼ 40 MeV simulated γ-ray
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Run Id 0  Event Id 3830

AcdTileCount: 0

AcdTotalEnergy: 0.0

CTBBestEnergy: 24.7847

CalEnergyRaw: 0.0

CalNumClusters: 0.0

CalNumXtals: 0.0

McEnergy: 41.0621

McZDir: 0.552563

TkrNumHits: 9

TkrNumTracks: 1.0

Event topology

I no ACD hit tiles (good);

I we still only have one track;

I and even worse: it doesn’t even
make it to the CAL!

I Can we estimate the energy for this
one?
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Interlude
One track vs. two tracks vs. multiple tracks
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I e+ and e− split the energy equally on average;
I not uncommon that one takes the vast majority. . .
I . . . at the level that the other track can die in the tungsten.

I At high energy the opening angle is small:
I at some point we don’t resolve the two tracks anymore (back into

the one-track case).

I Except for the stray tracks from CAL backsplash!

I Exercise: Give a rough estimate of the maximum energy at which
the TKR is able to resolve the two tracks in the pair.
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Back to the background
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Run Id 1  Event Id 24611

AcdTileCount: 0

AcdTotalEnergy: 0.0

CTBBestEnergy: 354.864105225

CalEnergyRaw: 152.997

CalNumClusters: 1.0

CalNumXtals: 6.0

McEnergy: 339.468

McSourceName: CrProtonSplash

McZDir: 0.846776

TkrNumHits: 14

TkrNumTracks: 1.0

Event topology

I no ACD hit tiles (good);

I one track (can happen);

I corresponding energy deposit in the
CAL (good);

I believe it or not this is a
back-entering CR proton /
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A simulated 540 GeV γ-ray
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Run Id 0  Event Id 3788

AcdTileCount: 38

AcdTotalEnergy: 32.8274

CTBBestEnergy: 535458.0

CalEnergyRaw: 377470.0

CalNumClusters: 4.0

CalNumXtals: 396.0

McEnergy: 540684.0

McZDir: 0.625247

TkrNumHits: 484

TkrNumTracks: 9.0

Event topology

I (potentially) many many tracks;

I lots of CAL back-splash;

I tracks point just about everywhere;

I many hits in the ACD;

I still we get energy and direction
right (for this particular event).
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And finally: a (real) TGF
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Event topology

I Pretty much the entire detector is on
(many many low-energy photons);

I standard event reconstruction can’t
do much, here.

I (The instrument was in a special
configuration/orientation; this would
not pass the gamma onboard filter.)
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Now let’s stop with event display but. . .

I γ-ray event topology varies a lot across the instrument phase space:
I can have (zero), one, two or many tracks;
I can have hits in the ACD (here is where we take advantage of the

segmentation);
I from “no energy deposit” to a “fully developed em shower” in the

CAL.

I Background event topology varies a lot across the instrument phase
space:

I some of them are easy to identify;
I some are hard;
I some are impossible (e.g., the irreducible background).

I Take-away message 1: event reconstruction is challenging.

I Take-away message 2: background rejection is challenging.
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Orbital environment (1/2)
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I Relevant γ-ray and primary CR spectra (not taking into account the
effect of the geomagnetic field):

I up to 106 background rejection power required;
I running out of photons above a few TeV with ∼ 2 m2 sr acceptance.
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Orbital environment (2/2)
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(c)

I CR-induced background level in low-Earth orbit depends on the local
geomagnetic conditions:

I low-energy CRs effectively shielded by the Earth’s magnetic field;
I how low is low depends on the position (a).

I Most of the charged particles crossing the LAT generate a treq;
I trigger request rate also varies across the orbit (b).

I Celestial γ-rays are unaffected by magnetic fields:
I the rates of the cleanest event classes (c) should not depend on the

local geomagnetic conditions; however. . .

I Exercise: Estimate the vertical rigidity cutoff at the equator.
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Instrumental pile-up (aka “ghost” effect)

y

z

Incoming γ-ray direction

Genuine γ-ray“Ghost” activity

I The persistence time of the electronics signals in the detector is of
the order of ∼ 10 µs:

I if two events happen to be that close in time (and we happen to
trigger on one) we’re effectively reading out both.

I Ghost signals can cause good γ rays to be misclassified as
background (i.e., loss of effective area).

I Exercise: estimate the fraction of events affected by ghosts.
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Trigger and onboard filter basics

I Ideally we would like to be able to:
I read out all the events (i.e., all particles crossing the detector);
I down-link all the events to the ground;
I postpone all the decisions (is the event a γ ray?) to the offline data

analysis phase.

I Unfortunately that’s generally impossible in high-energy physics
experiments:

I reading out an event takes time (at least 26.5 µs for the LAT);
during this deadtime the instrument is blind;

I the bandwidth for transmitting data to ground is limited
(∼ 1 Mb/s)—and expensive.

I Bottom line: we do have to take decisions onboard about:
I which events we want to read out;
I which events (among those that we read out) we want to transmit to

ground.

I Exercise: estimate the deadtime fraction if we were to read out all
the events causing a trigger request (take ∼ 8 kHz treq rate).
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Triggering the LAT

I Use fast (< 1 µs) signals to trigger readout;
I as opposed to ground analysis using slower (∼ 10 µs) signals.

I Each subsystem generates one or more trigger primitives:
I TKR: three adjacent tracker x-y layers above threshold;
I CAL LO: any single CAL channel above 100 MeV (adjustable);
I CAL HI: any single CAL channel above 1 GeV (adjustable);
I ROI: one or more ACD tile(s) over veto threshold (nominally 0.45

MIP) in proximity of a triggering TKR tower;
I CNO: signal in any of the ACD tiles above the CNO (Carbon Nitrogen

Oxygen) threshold (nominally 25 MIPs);
I PERIODIC: 2 Hz synchronous (for minimum bias event sample).

I Some of the trigger primitives can open a 700 ns trigger window;
I collect all the asserted primitives when the window is closed;
I map each combination into a look-up table;
I decide whether to read out the event or not.

I If the trigger request is accepted, the full LAT is read out.
I (It takes < 2 µs to take the decision.)

I Exercise: Does a MIP 45◦ off-axis generate a CAL LO?

Luca Baldini (INFN and UniPi) Fermi Summer School 2012 26 / 37



Trigger engines and prescales

Engine PERIODIC CAL HI CAL LO TKR ROI CNO Prescale Average rate [Hz]

3 1 × × × × × 0 2
4 0 × 1 1 1 1 0 200
5 0 × × × × 1 250 5
6 0 1 × × × 0 0 100
7 0 0 × 1 0 0 0 1500
8 0 0 1 0 0 0 0 400
9 0 0 1 1 1 0 0 700

10 0 0 0 1 1 0 50 100

(1: required, 0: excluded, ×: either)

I Some trigger primitive combinations are prescaled.

I Consider trigger engine 10 for example:
I (TKR && ROI) && !(CNO || CAL LO || CAL HI)
I This is most likely to be a MIP and very unlikely to be a γ ray;
I there are many of them: we only read out 1 every 50.

I Prescaling reduces deadtime:
I we don’t actually read out the event (which takes at least 26.5 µs).

I 5–10 kHz trigger request rate → 2–3 kHz event readout rate.

I Exercise: estimate the deadtime fraction for a 2.2 kHz readout rate.
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Onboard filter

I We’re down to 2.2 kHz average event readout rate;
I with an average compressed event size of ∼ 500 bytes that’s still too

much;
I need further onboard event filtering to reduce the rate of events to

be transmitted to ground.

I Onboard filter: configurable, has access to the full event
information;

I hierarchical set of conditions with the fastest being applied first.

I Multiple coexisting filtering algorithms running:
I gamma filter: keep whatever might possibly be a γ ray;
I HIP filter: select heavy ion events for CAL calibration;
I diagnostics filter: provide a prescaled unbiased sample of all trigger

types.

I 2–3 kHz event readout rate → 300–500 Hz downlink rate.

I Exercise: estimate the necessary average downlink bandwidth for
2.2 kHz and 400 Hz event readout rate.
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Data reduction overview
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I Almost all the particles (∼ 99%) downlinked to ground are still
charged background.

I (Though there is still interesting science in there.)
I The onboard filter is highly efficient for γ rays.
I The remaining data reduction steps are performed as part of the

offline ground processing.
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Event selection analysis overview

Trigger
§ 3.1.1

On-board filter
§ 3.1.2

Trigger and filter
§ 3.1

CAL recon
§ 3.2.1

TKR recon
§ 3.2.2

ACD recon
§ 3.2.3

Event reconstruction
§ 3.2

Merit
§ 3.3.1

Energy analysis
§ 3.3.2

PSF analysis
§ 3.3.3

CPF analysis
§ 3.3.5

TKR topology
§ 3.3.6

CAL topology
§ 3.3.7

Event classification
§ 3.3.8

Event-level analysis
§ 3.3

Definition of standard photon classes
§ 3.4

1

I (Disregard the section numbers for the purpose of this presentation.)
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CAL reconstruction overview

(b)

CAL centroid

CAL axis

I Apply xtal calibrations (i.e., convert ADC counts to MeV).
I Iterative moments analysis (i.e., calculate the principal axes of the

inertia tensor associated with the energy deposition):
I shower centroid;
I shower direction (∼ 1◦ resolution above ∼ 10 GeV);
I shower transverse/longitudinal spread (background rejection).

I Energy reconstruction:
I much, much more than summing up the xtal energies;
I three different reconstruction algorithms;
I different performance in different parts of the phase space.

I Note that we don’t currently attempt to identify separate clusters of
hit logs.
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TKR reconstruction overview

(c)

TKR vertex

TKR best tracks (1 and 2)

I Combine adjacent hit strips to form clusters.

I Seed the track-finding stage with the CAL information, if available.
I Combinatoric search for tracks through a Kalman fit/filter

technique:
I start from a seed;
I propagate to next plane based on the expected multiple scattering

(need particle/energy hypothesis) and add hits as possible;

I Order tracks by quality (longest, straightest: best).

I Vertexing: combine the two best tracks when possible.

I (Much more complicated than this in real life.)
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ACD reconstruction overview

I Apply tile/ribbon calibrations (i.e., convert ADC counts to MeV).

I Look for reasons to veto the event:
I (i.e., decide it’s a charged particle, as opposed to a γ ray).

I Much, much more complicated than requiring that there is no
energy in the ACD:

I a lot of phase space for weird things to happen;
I (as you have seen before in the event displays).

I Extrapolate TKR tracks to the ACD:
I is there any signal in the tile the track points to?

I But there are many ways we can potentially go wrong:
I did we pick the right track?
I did we happen to pass through inactive (or not fully efficient) areas

in the ACD (i.e., ribbons, corners)?
I are we affected by the backsplash (the energy deposited in the CAL

is a good proxy for that).
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Event-level analysis overview

I Complex multivariate analysis:
I uses Classification Trees in conjunction with plain cuts;
I a huge amount of work went into defining relevant classification

variables.

I PSF analysis:
I determine the best direction estimate (1st track, vtx, neutral vtx);
I along with a reconstruction quality indicator.

I Energy analysis:
I select the best energy method (+ quality indicator).

I “Charged Particle in the Field of view” analysis:
I identify events which are clearly charged particles in the FOV.

I TKR and CAL topology analysis:
I probability of an event being a γ ray using CAL/TKR information.

I Event classification:
I combine all the previous information.

I Definition of the photon classes.
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Standard photon classes

I How different photon classes differ?
I Primarily in the level of background contamination;
I and, since you don’t get anything for free, in the γ-ray efficiency too.
I So we have (form dirtiest to cleanest) P7TRANSIENT, P7SOURCE,

P7CLEAN, P7ULTRACLEAN.

I Why different photon classes?
I Because different analyses require different signal-to-noise ratios.
I (Or, phrased in a different way: different analyses might provide

additional handles to reject background).

I Point source analysis:
I cut on the ROI;
I is it a pulsar? Even better, can use the pulse phase, too!

I Isotropic background:
I no obvious spatial or temporal signatures to distinguish signal and

background.

I Exercise: how much background do you remove by selecting events
in a 5◦ ROI?
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Future developments in the event-level
analysis

I The LAT provides a huge amount of information on an
event-by-event basis.

I The instrument performance is not “once and forever”:
I you can improve by being more clever in the event reconstruction

and in the background rejection;
I even now that the LAT is built and up in space we can improve.

I Ongoing long-term effort to revisit all the aspects of the event-level
analysis:

I make use of the lessons learned operating the LAT;
I new pattern recognition in the TKR;
I clustering stage in the CAL;
I new energy reconstruction at high energy;
I new ACD reconstruction;
I new event classification. . .
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Conclusions

I The LAT is essentially a particle-physics instrument.

I Huge amount of information available on an event-by-event basis:
I event reconstruction and background rejection can be very hard;
I understanding the instrumental effects can also be very hard;
I we always have room for improving the performance!

I Large dynamic range and field of view:
I large variations in the event topology;
I parametrizing the instrument response is challenging.

I There’s a lot of stuff going on to get the photon energy, direction
and arrival time from the raw detector information!
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