

THE FERMI LARGE AREA TELESCOPE AN OVERVIEW

Luca Baldini INFN-Pisa and University of Pisa Iuca.baldini@pi.infn.it

Fermi Summer School 2012 Lewes, May 31, 2012

OUTLINE

- ► Detection principle: the concept of a pair conversion telescope.
 - basic design drivers.
- ► The Large Area Telescope:
 - silicon tracker (TKR);
 - electromagnetic calorimeter (CAL);
 - anti-coincidence detector (ACD).
- Detection principle revisited.
- Orbital environment.
 - (And instrumental pile-up, aka ghost effect.)
- Event triggering and filtering.
- Event-level analysis:
 - event reconstruction;
 - background rejection.
- Conclusions.
- All is very IRF-oriented!
- ► There are a few Exercises for you to solve in the following slides.

DETECTION PRINCIPLE

SCIENCE DESIGN DRIVERS

Effective area and Point Spread Function:

- thickness and layout of conversion layers;
- PSF also drives the design of the sensors, the spacing of the detection planes and the overall TKR design.

Energy range and resolution:

- thickness and design of the calorimeter;
- Field of view:
 - determined by the aspect ratio of the instrument;
- Charged particle background rejection:
 - mainly drives the ACD design;
 - also impacts the TKR and CAL design (which are needed for the background rejection).
 - need for a flexible triggering and event filtering system.

- Launcher type and allocated space:
 - maximum possible lateral dimensions of the instruments (i.e. geometric area);
 - about $\sim 1.8 \times 1.8 \text{ m}^2$ for Fermi (the LAT footprint is actually $\sim 1.5 \times 1.5 \text{ m}^2$).
- Power budget:
 - number of electronics readout channels in the tracker (i.e strip pitch, number of layers);
 - about 650 W overall for Fermi;
- Mass budget:
 - essentially limits the total depth of the calorimeter (once the footprint is fixed);
 - 3000 kg for Fermi.
- ► Telemetry bandwidth:
 - need onboard filtering.
- ice l'elescope Launch and operation in space:
 - sustain the vibrational loads during the launch;
 - operate in vacuum, sustain thermal gradients.

THE LARGE AREA TELESCOPE

Large Area telescope

- Overall modular design.
- 4 × 4 array of identical towers (each one including a tracker and a calorimeter module).
- Tracker surrounded by and Anti-Coincidence Detector (ACD).
- "It uses less power than a toaster and we talk to it over a telephone line." (Bill Atwood)

Tracker

- Silicon strip detectors, W conversion foils; 1.5 radiation lengths on-axis.
- ~ 10k sensors, 73 m² of silicon active area, ~ 1M readout channels.
- High-precision tracking, short dead time.

Anti-Coincidence Detector

- Segmented (89 tiles) as to minimize self-veto at high energy.
- 0.9997 average detection efficiency.

Calorimeter

- 1536 Csl(Tl) crystal; 8.6 radiation lengths on-axis.
- Hodoscopic, 3D shower profile reconstruction for leakage correction.

SILICON TRACKER/CONVERTER (1/2)

► Primary roles:

- convert γ rays into electron/positron pairs;
- main event trigger (more on this later);
- direction reconstruction.
- ► Also important for:
 - background rejection (SSD veto, hit counting);
 - energy measurement at low energy (i.e., below a few hundred MeV).
- Use of Silicon Strip Detector (SSD) technology:
 - ▶ precise tracking with ~ no detector-induced deadtime;
 - self-triggering.
- ► Key features:
 - \sim 73 m² of single-sided SSDs (400 μ m thickness, 228 μ m pitch);
 - ▶ 884,736 independent readout channels (\sim 200 µW per channel);
 - digital readout (plus layer OR time over threshold);
 - ► ~ 10⁻⁶ noise occupancy at the nominal 1/4 of a Minimum Ionizing Particle (MIP) threshold (providing ~ 100% detection efficiency).

Exercise: Estimate the average number of noise hits per event in the full LAT.

SILICON TRACKER/CONVERTER (2/2)

- Tradeoffs in the design of the tracker converter:
 - overall thickness of the converter foils: conversion efficiency vs. multiple scattering (limiting the angular resolution at low energy);
 - number and spacing of the planes: energy dependence of the PSF;
 - strip pitch: hit resolution vs. power consumption.
- ▶ 18 paired x-y layers (~ 36 cm on a side, spaced by ~ 3.5 cm) in two distinct sections:
 - front has better PSF and lower background contamination;
 - ▶ 1.5 X₀ on axis—that's a lot for a tracker!
- Exercise: What's the maximum off-axis angle the TKR will trigger?

Electromagnetic Calorimeter (1/2)

► Primary roles:

- energy reconstruction;
- contribution to the event trigger (more on this later);
- Also important for:
 - background rejection (shower shape);
 - seeding the tracker reconstruction.
- Crystal detector elements:
 - ▶ 8 layers of 12 Csl(Tl) crystals (27 × 20 × 326 mm³) per tower;
 - hodoscopic stacking (alternating orthogonal layers);
 - ▶ 8.6 X₀ on-axis.
- Readout electronics:
 - dual PIN photodiode on each crystal end;
 - each one processes by two electronics chains (×1, ×8);
 - ▶ four readout ranges, dynamic range 2 MeV-70 GeV per crystal.

Exercise: How much energy does a MIP on-axis release in the CAL?

Electromagnetic Calorimeter (2/2)

- CAL xtals with readout at each end:
 - measure longitudinal position of the energy deposition from light asymmetry;
 - provide a full 3-dimensional image of the EM shower;
- CAL imaging capabilities are crucial for both background rejection and energy reconstruction at high energy:
 - remember, the LAT is $\sim 10 X_0$ on axis, so there is a significant shower leakage out the back of the CAL.
- Exercise: What is the fraction of energy escaping out the back of the CAL for a 500 GeV photon on-axis?

ANTICOINCIDENCE DETECTOR

► Primary roles:

- event triggering and onboard filter (more on this later);
- background rejection.
- Also important for:
 - identifying heavy ions for CAL calibration purposes.
- One important lesson learned from the previous mission:
 - backsplash from the CAL in high-energy event can hit the ACD;
 - can cause self-veto, especially for monolithic shields.
- The LAT ACD is segmented:
 - 89 tiles (overlapping in one dimension) plus 8 ribbons (covering the gaps in the other);
 - can extrapolate tracks to specific tiles;
 - this also makes complete hermeticity more difficult to achieve.

LONG-TERM TRENDING AND STABILITY

 \blacktriangleright The LAT shows no significant degradation in time over the first \sim three years of mission.

drift of the light yield in the CAL expected from radiation damage.

A "Gold-plated" simulated 360 MeV γ -ray...

à, · ·		
	→x	

Event topology

- two clear tracks;
- tracks point to energy deposits in the CAL;
- no ACD hit tiles;
- tracks start in the middle of the instrument.

Luca Baldini (INFN and UniPi)

... AND A "GOLD-PLATED" BACKGROUND EVENT

	у		/
		` →x /	
		<u>)</u>	
	/		
/			

Event topology

- one track;
- track points to a hit tile in the ACD;
- (with > 25 MIPs signal, so this is actually a heavy ion);
- track starts in uppermost TKR layer (i.e., at the edge of the instrument).

Luca Baldini (INFN and UniPi)

A \sim 100 MeV simulated γ -ray...

\		
	(
	· · · · · · · · · · · · · · · · · · ·	
 * · ·	- NY	
	⇒x	
	►x	

Event topology

- no ACD hit tiles (good);
 - but this time we only have one track;
- where's the other guy (aren't we supposed to detect electron-positron pairs)?

Luca Baldini (INFN and UniPi)

... and a \sim 40 MeV simulated γ -ray

$\langle \rangle$		

Event topology

- no ACD hit tiles (good);
- we still only have one track;
- and even worse: it doesn't even make it to the CAL!
- Can we estimate the energy for this one?

Luca Baldini (INFN and UniPi)

INTERLUDE

ONE TRACK VS. TWO TRACKS VS. MULTIPLE TRACKS

• e^+ and e_- split the energy equally on average;

- not uncommon that one takes the vast majority...
- ... at the level that the other track can die in the tungsten.
- At high energy the opening angle is small:
 - at some point we don't resolve the two tracks anymore (back into the one-track case).
- Except for the stray tracks from CAL backsplash!
- Exercise: Give a rough estimate of the maximum energy at which the TKR is able to resolve the two tracks in the pair.

BACK TO THE BACKGROUND

			1
			/
		/	
		1.	
		/. ^	
		/	
		- /×	
		└──────	
		→x´×	
		-/*	
		/	
		/	
	(
([(
	1		
	2		
		2	*
		•	
			*
		→ y	10
			•
FTTTTTTTTTTT	FTTTTTTTTT	ITTTTTTTTTT	
		1	8

	P	

Event topology

- no ACD hit tiles (good);
- one track (can happen);
- corresponding energy deposit in the CAL (good);
- believe it or not this is a back-entering CR proton ③

Luca Baldini (INFN and UniPi)

A simulated 540 GeV γ -ray

AND FINALLY: A (REAL) TGF

	× ×××		× ×	xxx x	×	** ***
× × ×	* ×	- × ×	×	*** *		_ × _ ×
× × × ×	- x - x	× ×	× ×	× ×	* *	* * ×
	XXXXX	XXXXX X X	×	ж ж ж	× ×	×
* * * * ***	× ×	× × × ×		× ×		
* * * *	××	× × ×		× ×		
* ** ** **	** ×	×× × ×		× ×		
× × × ×	× × ×	× × × ×	x x x		* × ×	x xx xx x
* * ** * *	*** *	x x xxx		*	*	× × ×
x xx xx xx xx	× *	** *		×		× * ×
	× ×	**				* **
	*	* *	* * ···	× ×	X-101	* * *
			~ ~	~ ~		~ ~~~
* * * * * * * *	*	** **	7 *	* * *		* *
		· · · · · ·	• • • • •			v^ v^
· · · · ·	<u> </u>	· · ·			·	
			→X	· · ·	× ×	
···*	~ × ×		××	· · · ·		×

Event topology

- Pretty much the entire detector is on (many many low-energy photons);
- standard event reconstruction can't do much, here.
- (The instrument was in a special configuration/orientation; this would not pass the gamma onboard filter.)

Now let's stop with event display but...

- γ -ray event topology varies *a lot* across the instrument phase space:
 - can have (zero), one, two or many tracks;
 - can have hits in the ACD (here is where we take advantage of the segmentation);
 - from "no energy deposit" to a "fully developed em shower" in the CAL.

Background event topology varies a lot across the instrument phase space:

- some of them are easy to identify;
- some are hard;
- some are impossible (e.g., the *irreducible* background).
- ► Take-away message 1: event reconstruction is challenging.
- ► Take-away message 2: background rejection is challenging.

Orbital environment (1/2)

Relevant γ-ray and primary CR spectra (not taking into account the effect of the geomagnetic field):

- ▶ up to 10⁶ background rejection power required;
- running out of photons above a few TeV with $\sim 2 \text{ m}^2$ sr acceptance.

Orbital environment (2/2)

- CR-induced background level in low-Earth orbit depends on the local geomagnetic conditions:
 - low-energy CRs effectively shielded by the Earth's magnetic field;
 - how low is low depends on the position (a).
- Most of the charged particles crossing the LAT generate a treq;
 - trigger request rate also varies across the orbit (b).
- Celestial γ-rays are unaffected by magnetic fields:
 - the rates of the cleanest event classes (c) should not depend on the local geomagnetic conditions; however...
- Exercise: Estimate the vertical rigidity cutoff at the equator.

INSTRUMENTAL PILE-UP (AKA "GHOST" EFFECT)

- ► The *persistence* time of the electronics signals in the detector is of the order of $\sim 10 \ \mu s$:
 - if two events happen to be that close in time (and we happen to trigger on one) we're effectively reading out both.
 - Ghost signals can cause good γ rays to be misclassified as background (i.e., loss of effective area).
- Exercise: estimate the fraction of events affected by ghosts.

TRIGGER AND ONBOARD FILTER BASICS

Ideally we would like to be able to:

- read out all the events (i.e., all particles crossing the detector);
- down-link all the events to the ground;
- postpone all the decisions (is the event a γ ray?) to the offline data analysis phase.
- Unfortunately that's generally impossible in high-energy physics experiments:
 - reading out an event takes time (at least 26.5 µs for the LAT); during this deadtime the instrument is blind;
 - the bandwidth for transmitting data to ground is limited (~ 1 Mb/s)—and expensive.
- Bottom line: we do have to take decisions onboard about:
 - which events we want to read out; 2-120
 - which events (among those that we read out) we want to transmit to ground.

Exercise: estimate the deadtime fraction if we were to read out all the events causing a trigger request (take ~ 8 kHz treq rate).

TRIGGERING THE LAT

- Use fast (< 1 μ s) signals to trigger readout;
 - \blacktriangleright as opposed to ground analysis using slower (\sim 10 $\mu s)$ signals.
- Each subsystem generates one or more trigger primitives:
 - TKR: three adjacent tracker x-y layers above threshold;
 - CAL_LO: any single CAL channel above 100 MeV (adjustable);
 - CAL_HI: any single CAL channel above 1 GeV (adjustable);
 - ROI: one or more ACD tile(s) over veto threshold (nominally 0.45 MIP) in proximity of a triggering TKR tower;
 - CNO: signal in any of the ACD tiles above the CNO (Carbon Nitrogen Oxygen) threshold (nominally 25 MIPs);
 - PERIODIC: 2 Hz synchronous (for minimum bias event sample).
- Some of the trigger primitives can open a 700 ns trigger window;
 - collect all the asserted primitives when the window is closed;
 - map each combination into a look-up table;
 - decide whether to read out the event or not.
- If the trigger request is accepted, the full LAT is read out.
 - (It takes < 2 µs to take the decision.)
- ► Exercise: Does a MIP 45° off-axis generate a CAL_LO?

TRIGGER ENGINES AND PRESCALES

Engine	PERIODIC	CAL_HI	CAL_LO	TKR	ROI	CNO	Prescale	Average rate [Hz]
3	1	×	×	×	×	×	0	2
4	0	×	1	1	1	1	0	200
5	0	×	×	×	×	1	250	5
6	0	1	×	×	×	0	0	100
7	0	0	×	1	0	0	0	1500
8	0	0	1	0	0	0	0	400
9	0	0	1	1	1	0	0	700
10	0	0	0	1	1	0	50	100

(1: required, 0: excluded, \times : either)

- Some trigger primitive combinations are prescaled.
- Consider trigger engine 10 for example:
 - (TKR && ROI) && !(CNO || CAL_LO || CAL_HI)
 - This is most likely to be a MIP and very unlikely to be a γ ray;
 - there are many of them: we only read out 1 every 50.
- Prescaling reduces deadtime: Control of the second seco
 - we don't actually read out the event (which takes at least 26.5 μ s).
- ▶ 5–10 kHz trigger request rate \rightarrow 2–3 kHz event readout rate.
- Exercise: estimate the deadtime fraction for a 2.2 kHz readout rate.

▶ We're down to 2.2 kHz average event readout rate;

- with an average compressed event size of ~ 500 bytes that's still too much;
- need further onboard event filtering to reduce the rate of events to be transmitted to ground.
- Onboard filter: configurable, has access to the full event information;
 - hierarchical set of conditions with the fastest being applied first.
- Multiple coexisting filtering algorithms running:
 - gamma filter: keep whatever might possibly be a γ ray;
 - HIP filter: select heavy ion events for CAL calibration;
 - diagnostics filter: provide a prescaled unbiased sample of all trigger types.
- \blacktriangleright 2–3 kHz event readout rate \rightarrow 300–500 Hz downlink rate.

Exercise: estimate the necessary average downlink bandwidth for 2.2 kHz and 400 Hz event readout rate.

DATA REDUCTION OVERVIEW

- ► Almost all the particles (~ 99%) downlinked to ground are still charged background.
 - (Though there is still interesting science in there.)
- The onboard filter is highly efficient for γ rays.
- The remaining data reduction steps are performed as part of the offline ground processing.

EVENT SELECTION ANALYSIS OVERVIEW

• (Disregard the section numbers for the purpose of this presentation.)

CAL RECONSTRUCTION OVERVIEW

- ► Apply xtal calibrations (i.e., convert ADC counts to MeV).
- Iterative moments analysis (i.e., calculate the principal axes of the inertia tensor associated with the energy deposition):
 - shower centroid;
 - ▶ shower direction (~ 1° resolution above ~ 10 GeV);
 - shower transverse/longitudinal spread (background rejection).
- Energy reconstruction:
 - much, much more than summing up the xtal energies;
 - three different reconstruction algorithms;
 - different performance in different parts of the phase space.

 Note that we don't currently attempt to identify separate clusters of hit logs.

TKR RECONSTRUCTION OVERVIEW

- Combine adjacent hit strips to form clusters.
- ► Seed the track-finding stage with the CAL information, if available.
- Combinatoric search for tracks through a Kalman fit/filter technique:
 - start from a seed;
 - propagate to next plane based on the expected multiple scattering (need particle/energy hypothesis) and add hits as possible;
- Order tracks by quality (longest, straightest: best).
- Vertexing: combine the two best tracks when possible.
- (Much more complicated than this in real life.)

ACD RECONSTRUCTION OVERVIEW

- Apply tile/ribbon calibrations (i.e., convert ADC counts to MeV).
- Look for reasons to veto the event:
 - (i.e., decide it's a charged particle, as opposed to a γ ray).
- Much, much more complicated than requiring that there is no energy in the ACD:
 - a lot of phase space for weird things to happen;
 - (as you have seen before in the event displays).
- Extrapolate TKR tracks to the ACD:
 - is there any signal in the tile the track points to?
- But there are many ways we can potentially go wrong:
 - did we pick the right track?
 - did we happen to pass through inactive (or not fully efficient) areas in the ACD (i.e., ribbons, corners)?
 - are we affected by the backsplash (the energy deposited in the CAL is a good proxy for that).

EVENT-LEVEL ANALYSIS OVERVIEW

Complex multivariate analysis:

- uses Classification Trees in conjunction with plain cuts;
- a huge amount of work went into defining relevant classification variables.
- ► PSF analysis:
 - determine the best direction estimate (1st track, vtx, neutral vtx);
 - along with a reconstruction quality indicator.
- Energy analysis:
 - select the best energy method (+ quality indicator).
- "Charged Particle in the Field of view" analysis:
 - identify events which are clearly charged particles in the FOV.
- TKR and CAL topology analysis:
 - probability of an event being a γ ray using CAL/TKR information.
- Event classification:
 - combine all the previous information.
- Definition of the photon classes.

STANDARD PHOTON CLASSES

How different photon classes differ?

- Primarily in the level of background contamination;
- and, since you don't get anything for free, in the γ -ray efficiency too.
- So we have (form dirtiest to cleanest) P7TRANSIENT, P7SOURCE, P7CLEAN, P7ULTRACLEAN.
- Why different photon classes?
 - Because different analyses require different signal-to-noise ratios.
 - (Or, phrased in a different way: different analyses might provide additional handles to reject background).
- Point source analysis:
 - cut on the ROI;
 - ▶ is it a pulsar? Even better, can use the pulse phase, too!
- Isotropic background: Uamma-ray
 - no obvious spatial or temporal signatures to distinguish signal and background.

Exercise: how much background do you remove by selecting events in a 5° ROI?

FUTURE DEVELOPMENTS IN THE EVENT-LEVEL ANALYSIS

- The LAT provides a huge amount of information on an event-by-event basis.
- ▶ The instrument performance is not "once and forever":
 - you can improve by being more clever in the event reconstruction and in the background rejection;
 - even now that the LAT is built and up in space we can improve.
- Ongoing long-term effort to revisit all the aspects of the event-level analysis:
 - make use of the lessons learned operating the LAT;
 - new pattern recognition in the TKR;
 - clustering stage in the CAL;
 - new energy reconstruction at high energy;
 - new ACD reconstruction; Ce lesco
 - new event classification...

CONCLUSIONS

- ► The LAT is essentially a particle-physics instrument.
- ▶ Huge amount of information available on an event-by-event basis:
 - event reconstruction and background rejection can be very hard;
 - understanding the instrumental effects can also be very hard;
 - we always have room for improving the performance!
- Large dynamic range and field of view:
 - large variations in the event topology;
 - parametrizing the instrument response is challenging.
- There's a lot of stuff going on to get the photon energy, direction and arrival time from the raw detector information!

