EnERGY DISPERSION TUTORIAL (A.K.A. IRFs DO NOT BITE)

Luca Baldini
INFN-Pisa and University of Pisa luca.baldini@pi.infn.it

Fermi Summer School 2012 Lewes, 2012

- Wouldn't it be nice if we could measure the photon energy perfectly?
- Evaluate the effect of the energy dispersion on a power-law input spectrum.
- Remember: ScienceTools ignore the energy dispersion by default!
- In real life this is really something you would do with gtobbsim:
- all the dirty work done for you in the background;
- you get the pointing history for free.
- This is really an excuse to dig into the IRF fits files:
- it'll turn out to be handy if you have to create bracketing IRFs, for instance.

- Why the energy dispersion is (potentially) important?
- IRFs are binned in true energy;
- in real life you have bin-to-bin migrations in the count spectra.
- Why is the effect of the energy dispersion coupled to $A_{\text {eff }}$?
- Shall we prefer low-energy or high-energy tails?
- Is the effect more pronounced for hard or steep spectra?
- Is the effect more pronounced for high or low energies?

BACK ON TRACK

- Basic steps:

1. generate the input spectrum (energies follow a power-law distribution with $\Gamma=2$, directions are isotropic in the upper hemisphere in the LAT frame);
2. fold the input spectrum with the effective area (use P7SOURCE: :FRONT only);
3. smear the input spectrum with the LAT energy resolution;
4. compare the count spectra in true and measured energy.

- I'll use python as a pseudo-code, but you're welcome to use whatever you're more comfortable with!
- Some snippets of code on
http://www-glast.stanford.edu/cgi-bin/viewcvs/users/lbaldini/fermiSummerSchool2012/macro/
(but you shouldn't use them).

GEnERATING THE INPUT SPECTRUM

Let ROOT do the dirty work behind the scenes.

Use the inverse transform method:

$$
\begin{equation*}
u=\operatorname{random}(0,1) \quad x=F^{-1}(u) \tag{1}
\end{equation*}
$$

The cumulative distribution for a truncated power law is

$$
\begin{equation*}
F(x)=\frac{E_{\min }^{(1-\Gamma)}-x^{(1-\Gamma)}}{E_{\min }^{(1-\Gamma)}-E_{\max }^{(1-\Gamma)}}, \tag{2}
\end{equation*}
$$

(verify it!) therefore you can use:

$$
\begin{equation*}
x=\left[E_{\min }^{(1-\Gamma)}-u\left(E_{\min }^{(1-\Gamma)}-E_{\max }^{(1-\Gamma)}\right)\right]^{\frac{1}{(1-\Gamma)}} \tag{3}
\end{equation*}
$$

Generate a power law by the inverse transform method

```
import random
E_MIN = 10.
E_MAX = 1000000.
GAMMA = 2
def plPlain():
    u = random.random()
    x = (E_MIN**(1-GAMMA)-u*(E_MIN**(1-GAMMA)-E_MAX**(1-GAMMA)))**(1./(1-GAMMA))
    return x
```

You should get something along these lines:

GENERATING RANDOM DIRECTIONS

Standard recipe for a random point on the sphere:

$$
\begin{align*}
& u=\operatorname{random}(0,1) \\
& v=\operatorname{random}(0,1) \\
& \begin{cases}\phi & =2 \pi u \\
\theta & =\cos ^{-1}(2 v-1)\end{cases} \tag{4}
\end{align*}
$$

Here we don't bother about ϕ; also, the IRFs are tabulated in $\cos \theta$; finally we are only interested in the upper hemisphere, therefore all you need is:

$$
\begin{equation*}
\cos \theta=\operatorname{random}(0.2,1) \tag{5}
\end{equation*}
$$

(why 0.2?)

IRFs: THE $A_{\text {eff }}$ TABLES

A quick look at an aeff fits file...
import pyfits
hdulist = pyfits.open(AEFF_FILE_PATH)
print hdulist.info()

- Three main pieces:

1. effective area table;
2. ϕ dependence correction;
3. livetime correction.

- Effectively we only care about 1 .
- And you should have your file in \$INST_DIR/irfs/caldb_release/CALDB/data/glast/lat/bcf/ea/aeff_P7SOURCE_V6_front.fits

IRFs: THE $A_{\text {eff }}$ TABLES

A quick look at the effective area table...

```
import pyfits
hdulist = pyfits.open(AEFF_FILE_PATH)
hdu = hdulist['EFFECTIVE AREA']
print 'Header data unit %s' % hdu.name
for (i, column) in enumerate(hdu.columns):
    print '%3d\t%20s\t[%6s]\t%s\n' %\
    (i, column.name, column.unit, column.format)
```

...and the output should be:
Header data unit EFFECTIVE AREA
0 ENERG_LO [MeV] 60E
1
2
3
4

ENERG_HI	MeV] 60E
CTHETA_LO] 32 E
CTHETA_HI] 32 E
EFFAREA	m2] 1920E

- So we get:
- the energy binning (60 bins);
- the $\cos \theta$ binning (32 bins);
- the actual effective area values $(60 \times 32=1920$ values $)$.

IRFs: THE $A_{\text {eff }}$ TABLES

A quick look at the effective area table values...

```
import pyfits
hdulist = pyfits.open(AEFF_FILE_PATH)
data = hdulist['EFFECTIVE AREA'].data[0]
print data.field('ENERG_LO')
print data.field('ENERG_HI')
print data.field('CTHETA_LO')
print data.field('CTHETA_HI')
print data.field('EFFAREA')
# Retrieve the value of the i-th energy bin and the j-th cos theta bin.
# (You might or not need the ''flatten()'', here).
nebins = 60
i = 10
j = 22
print data.field('EFFAREA').flatten()[i + nebins*j]
```

The output is too long but you can imagine how it looks.

```
# Open the file and retrieve the data.
hdulist = pyfits.open(AEFF_FILE_PATH)
data = hdulist['EFFECTIVE AREA'].data[0]
# Create the arrays for the histogram binning.
xbins = numpy.hstack((data.field('ENERG_LO'), data.field('ENERG_HI')[-1]))
nx = len(xbins) - 1
ybins = numpy.hstack((data.field('CTHETA_LO'), data.field('CTHETA_HI')[-1]))
ny = len(ybins) - 1
# Create and fill the histogram.
h = ROOT.TH2F('aeff', 'Effective area', nx, xbins, ny, ybins)
for i in xrange(nx):
    for j in xrange(ny):
        aeff = data.field('EFFAREA').flatten()[i + nx*j]
        h.SetBinContent(i + 1, j + 1, aeff)
```

- You can use your favorite language/framework/data structure to store the $A_{\text {eff }}$ values (and retrieve them!).

- Your effective area table should look more or less like this.
- Note that the bin width is not constant in $\log (E)$-in case you are tempted to find the bin corresponding to a given E with one division;
- If you use ROOT you can rely on the ROOT: :TH2F::Interpolate() method.

ENERGY DISPERSION RECAP

First we define the scaled energy deviation:

$$
\begin{equation*}
x=\frac{1}{S_{D}(E, \theta)} \frac{\left(E^{\prime}-E\right)}{E} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
S_{D}(E, \theta)=c_{0}\left(\log _{10} E\right)^{2}+c_{1}(\cos \theta)^{2} & +c_{2} \log _{10} E+c_{3} \cos \theta+ \\
& +c_{4} \log _{10} E \cos \theta+c_{5} . \tag{7}
\end{align*}
$$

Then, in each energy/angle bin we fit the distribution of the scaled deviation with four piecewise Rando functions:

$$
\begin{equation*}
R\left(x, x_{0}, \sigma, \gamma\right)=N \exp \left(-\frac{1}{2}\left|\frac{x-x_{0}}{\sigma}\right|^{\gamma}\right) . \tag{8}
\end{equation*}
$$

All the parameters are stored in the fits files, so in principle you can reverse-engineer that (and you're very welcome to do so).

- Remember: the scaling function is defined with the goal of making the energy dispersion as independent as possible from energy and angle:
- if the energy dispersion was Gaussian...
- ... and the prescaling function captured all the richness of the energy dispersion itself. . .
- then we wouldn't need to perform the fitting step: the scaled energy deviation would be $\operatorname{Norm}(0,1)$ and the value of the scaling function would be the energy resolution.
- For the purpose of this exercise (at least to start with) we'll cheat (twice):
- take the energy scaling function as a proxy for the energy resolution;
- assume the energy dispersion is Gaussian.
- The parameters of the energy scaling function (7) are stored in the edisp fit file as the first 6 numbers of the 'EDISP_SCALING_PARAMS' HDU.

How MUCH OF A CHEAT IS CHEATING?

- A little bit, but not too much;
- the general trend is well reproduced;
- we do underestimate the energy resolution at low energy;
- (this is actually the most interesting part, so you might as well multiply the scaling function by ~ 1.25);
- and remember we are underestimating the tails (you might even multiply by ~ 1.5).

- Your energy scaling function should look more or less like this.

Now WE'RE READY TO GO!

poor man's attempt at putting everything together

```
import random
MAX_EFF_AREA = 0.5 # put the maximum of the effective area, here.
for i in xrange(NUM_EVENTS):
    # Extract energy and direction
    energy = ... # use your function, here
    costheta = random.uniform(0.2, 1)
    # Convolve with the effective area.
    aeff = ... # retrieve your effective area at the right energy/angle.
    ... # do your book-keping if needed.
    if random.random() < aeff/MAX_EFF_AREA:
        eres = ... # get the value of the scaling function.
        measuredEnergy = energy*random.gauss(1, 1.5*eres)
        ... # more book-keeping.
```

Fill in the blanks...

- The difference between blue and red is what you're after:
- plot the ratio of the two histograms.
- You can change the input spectral index!
- Things get better or worst with harder spectra? Why?
- And you can change the energy scale too!
- Can you explain analytically what happens above a few GeV ?

One Last THING

- It would be totally awesome if you plotted the actual energy dispersion, say at 10 GeV on axis;
- (or at your favorite energy/angle)!

Some directions. . .

$$
\begin{gather*}
R\left(x, x_{0}, \sigma, \gamma\right)=N \exp \left(-\frac{1}{2}\left|\frac{x-x_{0}}{\sigma}\right|^{\gamma}\right) \tag{9}\\
D(x)=\left\{\begin{array}{cl}
N_{L} R\left(x, x_{0}, \sigma_{L}, \gamma_{L}\right) & \text { if }\left(x-x_{0}\right)<-\tilde{x} \\
N_{l} R\left(x, x_{0}, \sigma_{l}, \gamma_{l}\right) & \text { if }\left(x-x_{0}\right) \in[-\tilde{x}, 0] \\
N_{r} R\left(x, x_{0}, \sigma_{r}, \gamma_{r}\right) & \text { if }\left(x-x_{0}\right) \in[0, \tilde{x}] \\
N_{R} R\left(x, x_{0}, \sigma_{R}, \gamma_{R}\right) & \text { if }\left(x-x_{0}\right)>\tilde{x}
\end{array}\right. \tag{10}\\
\begin{array}{ll}
\hline \tilde{x} & \gamma_{L} \\
\hline \hline 1.5 & 0.6 \\
\hline
\end{array} \\
\hline
\end{gather*}
$$

Find in the FITS files: the normalization $N_{r}=N_{l}$ (NORM), the centroid position x_{0} (BIAS), the two core scales $\sigma_{r}(\mathrm{RS} 1)$ and $\sigma_{l}(\mathrm{LS} 1)$ and the two tail scales σ_{R} (RS2) and σ_{L} (LS2).

SOME DIRECTIONS. . .

- And then you have to un-prescale...

