Multi-TeV measurement with CREST experiment

All property and a property of the

Presented by Nabee Park Enrico Fermi Institute, University of Chicago

Saturday, June 2, 12

Cosmic Ray Electrons

Compiled data up to Jan. 2010 from CR database (A.W.Strong et al, 2009 ICRC)

Primary + Secondary

- Substantially primary
 (positron fraction ~ 10 %)
- ~ 1% of proton intensity at 1GeV, rapidly decreased than proton
 - Energy loss of high energy electron is proportional to E2
 - TeV electron horizon : ~ 1 kpc (10⁵ yr propagation)
 - Possible local source : Vela, Cygnus loop, Monogen, SNRs

TeV measurement @ Earth

Multi-TeV region largely unexplored, where the potential is greatest for detecting nearby cosmic accelerators...

Cosmic Ray Electron Synchrotron Telescope

High energy electron (>TeV) measurement via synchrotron radiation

- Detect x-ray synchrotron photons generated in the magnetic field of the Earth as primary electron passes through
 - Advantage
 - Increase of the effective area of instrument
 - Rejection of proton signal

CREST Collaboration

University of Chicago : S. Wakely, N. H. Park, D. Müller Indiana University : C.R. Bower, J. Musser Northern Kenturcky University : S. Nutter Penn State University :T. Anderson, S. Coutu, M. Geske University of Michigan : M. Schubnell, G, Tarlé, A. Yagi, J. Gennaro

Signal and Background

Signal

- Synchrotron radiation generated from electron
 - Line of photons arriving nearly simultaneously
 - Mean photon energy related to primary electron energy

Background

- Cosmic and shower-produced x-rays and large charged particle flux
 - Random single x-ray coincidences
 - Interactions in the detector and frame
- Bremsstrahlung photons from low energy electrons

→ Requires good timing resolution

50

100

-100

-50

Detector Design

Crystal Array

- 1024 BaF₂ crystals w/ 2" PMT readout, embedded in foam matrix
- Photon energies from ~30 keV to 30 MeV
- Designed to have 1 nsec timing resolution
- Veto paddles
 - > 99% hermetic
 - Thin plastic scintillator with waveshifting fiber readout into 2" PMTs
- Expected Performance
 - Sensitivity on synchrotron coming from electron up to ~ 50 TeV or so

Antarctica Flight

- Antarctica flight in 2011/12 season
 - Launch on Christmas day on 2011
 - Flight time : ~ 10 days
 - Recovery done on Feb. 2012

Current Status

Analysis

- Flight calibration
 - Timing calibration : by using LED pulser run & adjacent hits in crystal (calibration trigger)
 - Energy calibration : by using Radium impurities in crystal and 511 keV line
- Comparison between flight data and simulation

Investigation on hardware improvements

- Lighter detector
- Better Compton scattering shield