Outline

- WCD 2

- Cosmic Ray Background
- Large and small scale anisotropy
- Energy Reconstruction
- Gamma-Ray Datá

Cosmic Ray Discovery

- Physikalische Zeitschrift: "The results of these observations seem best explained by a radiation of great penetrating power entering our atmosphere from above."

Victor Franz Hess

Elevation	Rate
Ground	12
1 km	10
2 km	12
3.5 km	15
5 km	27

V. F. Hess. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physikalische Zeitschrift, 13:1084-1091, November 1912.

Electroscope

- Charged gold leaf spontaneously discharges due to ionizing radiation.
- Invented in 1787 by Abraham Bennet.

Compton-Getting Effect

The motion of the earth through a
cosmic-ray 'aether'
creates a forwardbackward anisotropy in the direction of motion

If CR's stationary w.r.t galactic rotation, a large anisotropy should be visible (~1\%).
Phys RevVol 47, Noll (1935)

Other sources of anisotropy

- Diffusion from the galactic plane (higher matter density) into the galactic halo (lower matter density).

- Local CR sources.

Early detection of Anisotropy

Sidereal counting rates for various experiments

Anisotropy ~few parts in 1000 observed.

Tibet Air Shower Array

2006-

High statistics examination of anisotropy with a surface detector

M. Amenomori, et al. Science 314, 439 (2006)

Super-K neutrino detector

Guillian et al,Phys.Rev. D75 (2007) 062003

Observe neutrino secondaries from CR air showers

2 Approaches to CR anisotropy

1) Forward backward asymmetry method to study "large scale anisotropy".

Derive shape of large scale features.
2) "Direct Integration" background subtraction to study "intermediate scale anisotropy".

Background derived from vicinity of source. High pass filter.

Search for Large scale anisotropy

Systematic effects can be large
Day/night variation
Seasonal variation
Forward-backward asymmetry technique
Declination strips (5 degrees)
$\operatorname{FBAsymmetry}(\theta, \alpha)=\frac{R(\theta+\alpha)-R(\theta-\alpha)}{R(\theta+\alpha)+R(\theta-\alpha)}$

7 years of data
95 billion events in sample
6 TeV median proton energy

Sky Map of CR large scale anisotropy

(Declination strips are not correlated)
Range of variation $\sim 5 \times 10^{-3}$
consistent with Tibet results

Seasonal Variation

Background Estimation

Background estimation confined to local declination strip.

Method used to estimate background for gamma-ray source analysis.

Assume: Local coordinate distribution is stable on short time scale.

Need not assume that the rate is constant in time.

Integration time is $30^{\circ}(2 \mathrm{hr})$

Effectively this is a High-Pass filter

Suppression of large scale features

- 2 hr background interval

- Anisotropy on the 5-10 degree scale.
- Peak excess $\sim 7 \times 10^{-4}$ (much smaller than the LSA)
- Explanations are difficult because the gyro-radius of a 10 TeV proton in a $1 \mu \mathrm{G}$ field is 0.01 parsecs=2000 AU

No Background Subtraction

- Milagro can separate gamma-ray and hadron induced events through the presence of large depositions in the bottom layer.
- Region A:
$\chi^{2}($ hadron $)=10.3 / 16$ dof
$\chi^{2}($ gamma $)=124.0 / 16 \operatorname{dof}$
- Region B:
χ^{2} (hadron) $=19.0 / 16$ dof
$\chi^{2}(g a m m a)=84.8 / 16 \mathrm{dof}$

$$
A_{4}=\frac{(\text { fTop }+f \text { Out }) * n \text { Fit }}{m x P E} \left\lvert\, \begin{array}{ll}
\begin{array}{l}
\text { mxPE: } \\
\text { fTop: } \\
\text { fOut: } \\
\mathrm{nFit:}
\end{array} & \begin{array}{l}
\text { maximum \# PEs in bottom layer PMT } \\
\text { fraction of hit PMTs in Top layer } \\
\text { fraction of hit PMTs in Outriggers } \\
\text { \# PMTs used in the angle reconstruction }
\end{array}
\end{array}\right.
$$

Spectral fit to excess

Milagro Observation using Background Calculation over 2 hour (30° in RA) intervals

Helio-Tail

Energy Parameter

Energy Dependence of FrASOR

Energy Dependence of FrASOR

Energy Dependence of FrASOR

About the data....

- Milagro collected data from 2000 to 2008
- Outrigger array was completed in 2004.
- Addition of outriggers: $2 x$ sensitivity increase
- Data is divided into 9 operational 'epochs'.
- Each epoch is simulated independently.
- Epochs 7,8,9 used in energy analysis.
- Data used in energy fits: September 2005 - March 2008.

Fitting Procedure

$$
\text { Flux }=I_{o}(E / T e V)^{-a} e^{-(E / E c)}
$$

Perform fit in 'Frasor' space, not energy space.
Minimize $X^{2}\left(I_{0}, a, E c\right)=\Sigma\left(\operatorname{Fr}\left(I_{0}, a, E c\right)-F r^{\text {measured }}\right)^{2} / \sigma^{2}$

Method tested with fits to the hadronic background spectrum

Spectrum of the Crab
 RA:83.65 DEC:22.05

Fit Results: (no cutoff)
Io $=6.6[5.0,8.0] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$
$a=2.95$ [2.85,3.03]
 $x^{2}=28.3$ (25 dof)

Softer than IACT spectra ($a_{\text {IACT }} \sim 2.6$)

Fit Spectrum: $\left(5.23 \times 10^{-}-7\right)(\mathrm{E} / 1 \mathrm{TeV})^{\wedge}-2.75 \exp (-\mathrm{E} / 70.8 \mathrm{TeV})$

[^0]
Mrk 421

Fit Spectrum: $(5.45 \times 10-7)(\mathrm{E} / \mathrm{TeV})^{-}-2.25 \exp (-\mathrm{E} / 3.2 \mathrm{TeV})$

Fit Results: (3-parameter)
Io $=5.2[1.9,14.0] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$
$a=1.90$ [1.50,3.5]
$E c=2.5[1.4,20]$
$x^{2}=33.5$ (24 DOF)

Fit Results: Fix spectral index at 2.1 (2-parameter)

$$
I_{0}=5.4[3.0,10.1] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}
$$

$$
E c=2.8[1.8,4.0] \mathrm{TeV}
$$

$$
\left.x^{2}=28.3 \text { (} 25 \text { dof }\right)
$$

MGRO J1908+06

RA:287.05 DEC:6.05

chisq_Alpha2.10

Fit Results: (no cutoff)
Io $=6.6[3.4,12.1] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$ $a=3.00$ [2.8,3.2]
$x^{2}=29.3$ (25 DOF)

Fit Results: (3-parameter)
Io $=0.62[0.29,4.9] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$
$a=1.50[1.50,2.65]$
$E c=14[10.50] \mathrm{TeV}]$
$x^{2}=22.1$ (24 DOF)

Fit Results: (hold $a=2.1$)
Io $=2.1[1.1,3.1] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$
$E c=14[10,40] \mathrm{TeV}$
$x^{2}=23.3$ (25 DOF)

Dragonfly - MGRO J2019+37/ OFGL J2020.8+3649

RA:304.75 DEC:37.05

Fit Results: (no cutoff)
Io $=1.74[1.10-2.50] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$
$a=2.62[2.50-2.75]$
$x^{2}=31.7(25$ DOF)
Fit Results: $(3$-parameter)
Io $=0.54[0.20,1.82] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$
$\mathrm{a}=1.83[1.502 .55]$
$\mathrm{Ec}=22[12,177] \mathrm{TeV}$
$x^{2}=26.9(24$ DOF $)$

Fit Results: (hold $a=2.1$)
Io $=0.87[0.64,1.1] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$ $\mathrm{Ec}_{\mathrm{c}}=31(25,44) \mathrm{TeV}$
$x^{2}=27.3(25$ DOF)

MGRO J2031+41/TeV 2032+41

RA:307.75 DEC:41.05

Fit Results: (no cutoff)
Io $=2.6[1.3,3.6] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$ $a=3.02$ [2.80,3.20]
$x^{2}=24.2$ (25 DOF)

Fit Results: (3-parameter)
Io $=0.42(0.20,2.40) \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$
$a=1.53[1.50,2.83]$
$E c=9[5.6,56] \mathrm{TeV}$
$x^{2}=18.6$ (24 DOF)

Fit Results: (hold a=2.1)
Io $=0.92[0.58,1.50] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$ $E c=14(9,20) \mathrm{TeV}$
$x^{2}=18.6$ (25 DOF)

Boomerang - MGRO J2229+61,0FGL J2229+6114

RA:337.25 DEC:61.25

chisq_Alpha2.10


```
Fit Results: (no cutoff)
Io = 4.0 [1.7,7.1] }\times1\mp@subsup{0}{}{-7}/\textrm{s}/\mp@subsup{\textrm{m}}{}{2}/\textrm{TeV
a=3.10 [2.83,3.38]
x = 14.4 (25 DOF)
```

Fit Results: (no cutoff)
Io $=4.0[1.7,7.1] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$
$x^{2}=14.4$ (25 DOF)

Fit Results: (3-parameter)
Io $=2.68(0.18,7.72) \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$ $a=2.70(1.50,3.42)$
$\begin{array}{rl}\Gamma^{2} & 45 \text { (} 6 \text { inf } \\ x^{2} & \text { TeV } \\ \text { (}\end{array}$

```
Fit Results:(hold a=2.1)
Io = 1.28[0.55,2.50] \times 10-7 / s/m}\mp@subsup{\textrm{m}}{}{2}/\textrm{TeV
Ec=14(8,25) TeV
x}=18.6(25 DOF
```


Benefit of Adjusting Spectral Hypothesis Example: Active Galaxy Markarian 421

ra:166.15 dec:38.25

Mrk421 with 2.6 Spectrum Hypothesis
ra:166.15 dec:38.25

Mrk421 with 2.0 Spectrum and 5 TeV Cutoff Hypothesis

[^0]: Fit Results: (3-parameter)
 Io $=5.2[2.0,8.0] \times 10^{-7} / \mathrm{s} / \mathrm{m}^{2} / \mathrm{TeV}$

 $$
 a=2.75[2.22,3.03]
 $$

 $$
 \Gamma=71[22, \mathrm{inf}]
 $$

 $$
 x^{2}=27.1 \text { (24 DOF) }
 $$

