Fermi Summer School 2012

A brief retrospective

Liz on behalf of Jamie and Julie

Gamma-ray Astrophysics

- Gamma-rays cover a huge swath of the electromagnetic spectrum
- The gamma-ray sky is still very new
- High-Energy gamma-rays probe the nonthermal universe
 - Explore extreme environments hosting powerful particle accelerators 2

The Fermi Observatory

Large Area Telescope (LAT)

From Julie

Observes 20% of the sky at any instant, views entire sky every 3 hrs 20 MeV - 300 GeV - includes unexplored region between 10 - 100 GeV

> **_Gamma-ray Burst Monitor (GBM)** Observes entire unocculted sky Detects transients from 8 keV - 40 MeV

Unique capabilities for GeV astrophysics

- Largeeffective area
- Good angular resolution
- Huge energy range
- Wide field of view

Brief History of Detectors* for GeV Gamma-ray Astronomy * in space

- 1967-1968, OSO-3 detected os Milky Way as an extended γ -ray source, 621 γ-rays
- 1972-1973, SAS-2, ~8,000 celestial γ-rays

From Seth

- 1975-1982, COS-B, orbit resulted in a large and variable background of charged particles, ~200,00 γ-rays
- 1991-2000, EGRET, large effective area, good PSF, long mission life, excellent background rejection, and >1.4 × 10⁶ γ-rays
- 2007-, AGILE, like 1/16-th LAT, with small calorimeter, sensitivity ~EGRET

SAS-2

COS-B

From Seth Reminder: The LAT Sky

The GeV sky is Steady...

The Crab is variable

Observations of the light curve of the Crab Nebula in the range 0.1 to 300 GeV showing the three observed flares. Each horizontal unit represents a 12h time bin. The red lines represent the average flux before and during the flares (image: Balbo et al. 2011).

"You can divide astronomy into two parts: the of Crab Nebula and the astronomy of everything else" Burbidge

rom Trevor

The southern jet moves!

Crab is also yummy and fun!

From Pasquale Accleration comes from something moving

FREE EXPANSION VELOCITY: $V_s = \sqrt{\frac{2E_{ej}}{M_{ej}}} = 10^9 E_{51}^{1/2} M_{ej,\Theta}^{-1/2} cm/s$

THE EXPANSION SPEED DROPS DOWN DURING THE SEDOV-TAYLOR PHASE, BUT THE MACH NUMBER IS ~100

A STRONG SHOCK WAVE DEVELOPS

$\frac{\partial f_0}{\partial t} = -\frac{\partial J}{\partial z}$ AND PUTTING THINGS TOGETHER: $\frac{\partial f_0}{\partial t} = -\frac{\partial J}{\partial z}$

BUT IT IS EASY TO SHOW THAT THE FIRST TERM MUST BE NEGLIGIBLE: $J = \frac{v}{2} \int_{-1}^{1} d\mu \mu f_0 (1 + \delta \mu) = \frac{1}{3} v \delta f_0 \ll v f_0 \qquad \delta \ll 1$

Energy Loss of heavy (M»m) charged Particles Fromomuk in Matter

- Energy loss described by Bethe-Bloch formula
- Ionisation through inelastic scattering & atomic . excitation
- Global minimum in dE/dX @ By-3.5 -> Minimum Ionizing . Particle (MIP)
- dE/dx at minimum 2 MeV cm² / g (multiply with density . and thickness of material to get total energy loss)
- dE/dx ~ Z with Z=atomic number of absorber .
- dE/dx ~z² with z=charge of incident particle .
- Hadronic interactions come in addition (needed for shower development)

What would you chose?

High density and high Z? or Low density and low Z?

How to see gamma rays at ground level

rom Lexicon

- IACT Imaging Atmospheric Cherenkov Telescope (detector includes both the fancy mirror and camera, but also includes the atmosphere, which is used as a detector volume.
- EAS Array Extended air shower detector. Detects particles at the ground.

Cherenkov telescopes...Even a toddler can do it!

