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 Abstract:   We extend the two-dimensional two-layer outer gap model to a three-dimensional geometry and use it to study the high-energy emission of 
the Vela pulsar. We apply this three dimensional two-layer model to the Vela pulsar and compare the model light curves, the phase-averaged spectrum 
and the phase-resolved spectra with the recent Fermi observations, which also reveals the existence of the third peak between two main peaks. The 
phase position of the third peak moves with the photon energy, which cannot be explained by the geometry of magnetic field structure and the caustic 
effects of the photon propagation. We suggest that the existence of the third peak and its energy dependent movement results from the azimuthal 
structure of the outer gap.

In this model,  the outer gap is divided into two parts: 
1) the main acceleration region on the top of last open field lines, where the charge 

density is much lower than the Goldreich-Julian charge density and the charged 
particles are accelerated by the electric field along the magnetic field to emit multi-
GeV photons. 

2) the screening region around the upper boundary of the gap, where the charge 
density is larger than the Goldreich-Julian value to close the gap and particles in this 
region are responsible for multi-100MeV photon emission.

(The simplified distribution of the charge density 
(solid line) and the corresponding accelerating 
potential (dot-dashed line) of the two-layer outer 
gap.)

The Three Dimensional Gap:

       We use a simple step function to approximate the distribution of the charge density in 
the trans-field direction in the poloidal plane (the plane where the field lines have same 
polar angle).

     We divide the gap into many equal divisions in the 
azimuthal direction. The gap structure of each slice with 
a fixed azimuthal angle is approximately represented by 
the two-dimensional situation shown in Wang et al. 
(2010). Using the similar method, we solve the Poisson 
equation to obtain the potential and the accelerating 
electric field.

      The accelerated particles release the power gained from the accelerating electric 
field, through the curvature radiation process. As the case of the two-dimensional model, 
the shape of the spectrum is determined by gap fraction, , the ratio of the size of main 
acceleration region to that of the whole gap,   , and the charge density in the main 
acceleration region,    .

     We adopt the rotating vacuum dipole field to calculate the light curves and spectra. 
The curvature photons are assumed to be emitted in the direction of the particle motion, 
which can be described as
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�v = vp �B/B + �r × �Ω  (Takata et al. 2007)

The skymap of the radiations outside of the 
null charge surface with inclination angle α = 
57◦. The x-axis is the pulse phase and the y-
axis is the direction of the radiation. The 
dashed line is the viewing angle, which is 
chosen as β = 80◦.

     We introduce the factor a to represent the magnetic 
field lines at a given layer and take a = 1 for the last open 
field lines. For Vela Pulsar, we choose a=1 to 0.935.

The Simple Case:
Firstly, we assume constant rho_1, h1/h2 and f in the 
azimuthal direction. rho_1 = 0.05, h1/h2 = 0.927 and f 
= 0.2.
The simple caustic model can not explain the phase 
shift of the observed third peak. On these ground, we 
speculate that the existence of the third peak and its 
phase shift is related with more complex structure of the 
gap.
The solid lines are the observed light curves from Fermi-
LAT (Abdo et al., 2010).

The effects of the distributions of the three parameters:
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       By the definition of the gap fraction of equation, 
we may choose the form of the azimuthal 
distribution of f.

       It is expected that as the null charge surface is 
closer to the stellar surface, the number density of 
the X-ray photons increases in the gap and therefore 
the screening region becomes thinner.

# # # We assume that the averaged charge density 
has a distribution in the azimuthal direction due to 
the effect of E⊥×B drift motion. Without the effect of 
drifting, the number of particle in φp-cell is                                
#    ## # # # # # # # # . With the drifting effect, the 
real number of particle in  # -cell (N(φp)) may come 
from      ##    ## # cell, # # # # # #
Since the average charge density,
                                    we obtain:

Conclusion:
We find that the distributions of rho_1 and f make third-peak-like structure 
in the bridge region of light curve above 1 GeV, while the distribution of 
h1/h2 makes a bump in the bridge region of the light curves below 1 GeV. 
The phases of the third peaks caused by the azimuthal distributions of 
h1/h2, rho_1 and f are different from each other. Consequently, the 

We also show that the present model can reproduce the 
distribution of the cut-off energy for each rotation phase.
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The photon indices and cut-off energies of the phase-resolved spectra of different pulse phases 
given by the more realistic model, comparing with the observed data (circle) (Abdo et al., 2010).

difference in the phases 
produces the shift of the 
combined third peak with 
the photon energy. 

The phase averaged spectrum with the 
distributions of rho_1, h1/h2 and f, 
comparing with the observed data (circle) 
from Fermi-LAT (Abdo et al., 2010)

N0(φp) ∝ f(φp)ρ̄0(φp)

N(φp) = N0(φp +∆φp)

ρ̄(φp) = N(φp)/f(φp)
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Intensity map in 
the pulse phase 
and energy plane. 
The darkness 
represents the 
percentage of the 
number of the 
pho tons o f 
certain interval of 
pulse phase in the 
total number of 
pho tons o f 
certain interval of 
energy.

More Realistic Case:
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We let one of the three 
parameters to be a 
Gaussian function of the 
polar anlge and the 
other two as constant, to 
s h o w h o w t h i s 
parameter affects the 
shapes of the energy 
dependent light curves.

Then we combine the 
three together.
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