

GRB 090926A is one of the four brightest gamma-ray bursts observed by Fermi. We report here the Summary: first measurement ever of a spectral break in the extra high energy component of a gamma-ray burst [1].

We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A clearly shows a short spike in the light curve that is present in all detectors that see the burst, suggesting that there is a common region of emission across the entire Fermi energy range. In addition, we report

here for the first time the detection with good significance of a high-energy spectral break (or cutoff) in the extra power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.

GRB 090926A light curve

- ▶ MET: $T_0 = 275631628.99$ s
- ▶ Redshift: z = 2.106 (GCN 9942, VLT)
- \blacktriangleright T90 = 15.3 ± 0.2 s (50 keV-300 keV)
- \blacktriangleright High energy emission delay ~ 3.3 s
- ► Highest energy γ at $T_0 + 26$ s : E=21 GeV

LAT-GBM joint spectral fit

GBM and LAT light curves of Figure 1: GRB 090926A. The fourth panel shows all LAT events that pass the on-board GAMMA filter. The first four light curves are background-subtracted and are shown for 0.1s time bins. The fifth and sixth panels show LAT data transient class events for energies > 100 MeV and > 1 GeV using 0.5 s time bins.

References

spectra and best-fit (top), the fit *residuals (*bottom).

cally preferred model (> 4σ).

- ► The LAT/GBM joint fit is mandatory, LAT data alone cannot constrain the energy cutoff.
- A long awaited result: the first measurement of a spectral cutoff in the extra high energy component of a gamma-ray burst, the cutoff energy is $E=1.41^{+0.22}_{-0.42}$ GeV.

Time resolved spectral analysis

Figure 3: Zoom on the light curve around time interval c for a 0.05 s time binning.

The light curve shows a high peak in flux at $T_0 + 10$ s, across all the detectors, i.e. from the keV to the GeV energy range, and a variability time scale $\Delta T = 0.15 \pm 0.01$ s.

We ran a time resolved spectroscopy in the 4 time intervals defined in figure 1, in-Figure 4: Best-fit model for the $(T_0 + [9.8; 10.5] \text{ s}).$

cluding the flux peak by itself *time-integrated data (top) and the* time-resolved spectroscopy (bottom), with $\pm 1 \sigma$ error contours.

[1] Ackermann M. et al., *Detection of a* Spectral Break in the Extra Hard Component of GRB 090926A, ApJ, 729, 114 (2011).

- [2] Krolik, J. H., & Pier, E. A., *Relativistic* motion in gamma-ray bursts, ApJ, 373, 277 (1991).
- [3] Abdo, A. A. et al., *Fermi Observations of* high-energy gamma-ray emissions from GRB 080916C, Science, 323 (2009)
- [4] Granot, J. et al., *Opacity buildup in im*pulsive relativistic sources, ApJ, 677, 92 (2008)

- The time resolved spectroscopy shows that the high energy cutoff is significant in interval c (the flux peak) at a $\sim 4\sigma$ level: the cutoff energy is $E = 0.40^{+0.13}_{-0.06}$ GeV.
- ► An evolution of the energy cutoff with time cannot be statistically proven but is possible.

Discussion

- ► GRB 090926A has a well defined flux peak at $T_0 + 10$ s: a short variability $\Delta T = 0.15 \pm 0.01$ s to be associated with a spectral cutoff at $E = 0.40^{+0.13}_{-0.06}$ GeV.
- \blacktriangleright Under the assumption that the cutoff is due to $\gamma\gamma$ absorption within the jet [2], we're able to estimate the bulk Lorentz factor Γ_{jet} of the emission region for the time interval c:
 - \triangleright a one-zone, steady emission model [3], leads to $\Gamma_{jet} \sim 700$
 - \triangleright using a thin-shell, time dependent model [4], leads to $\Gamma_{jet} \sim 200$