Two active states of GB6 B1310+4844

K. Sokolovsky¹, on behalf of the Fermi Large Area Telescope collaboration; S. Vercellone², and L. Carrasco³ ¹MPIfR, Bonn, Germany/ASC Lebedev, Moscow, Russia ²INAF-IASF, Palermo, Italy ³INAOE, Mexico

Max-Planck-Institut für Radioastronomie

The Flat Spectrum Radio Quasar (FSRQ) GB6 B1310+4844, also known as GB1 1310+487 (13:12:43.354 +48:28:30.94, J2000; z = 0.501), drew the attention of observers after exhibiting a prominent GeV γ -ray flare in November 2009 which was detected by *Fermi*/LAT and AGILE/GRID. The peak photon flux at E > 100 MeV has reached $1.2 \pm 0.2 \times 10^{-6}$ photons cm⁻² s⁻¹ on November 26, more than 40 times above the average level during the first 11 months of the Fermi mission. The γ -ray flare has triggered follow-up X-ray, UV, optical, IR and radio observations with *Swift*, Kanata, 2.1 m Guillermo Haro (OAGH) and the Effelsberg 100 m telescopes. The second high γ -ray state of the source was observed by *Fermi*/LAT in June 2010. It was considerably longer than the previous flare and was

characterized by a lower peak γ -ray flux. Additional observations with *Swift*, Nordic Optical Telescope (NOT), OAGH and Effelsberg were obtained. MOJAVE 15 GHz VLBA observations in 2009–2010 reveal a compact core with no visible extended jet. Here, we investigate multi-wavelength properties of the two active states of GB6 B1310+4844.

ermi

Gamma-ray

Space Telescope

Figure 1: γ -ray lightcurve obtained during the 30 moths of Fermi/LAT observations, 7d binning.

Changes in the γ **-ray spectrum**

_	Period	Time interval	Flux	Γ
-	30 months	2008-08-04 - 2011-02-04	$1.126 \times 10^{-7} \pm 3.9 \times 10^{-9}$	2.177 ± 0.023
	Pre-flare	2008-08-04 - 2009-11-16	$3.436 \times 10^{-8} \pm 4.9 \times 10^{-9}$	2.409 ± 0.094
	Flare 1	2009-11-16 - 2009-12-21	$6.940 \times 10^{-7} \pm 3.2 \times 10^{-8}$	1.973 ± 0.032
	Inter-Flare	2009-12-21 - 2010-04-26	$1.370 \times 10^{-7} \pm 1.1 \times 10^{-8}$	2.145 ± 0.055
	Flare 2	2010-04-26 - 2010-07-26	$2.825 \times 10^{-7} \pm 1.6 \times 10^{-8}$	2.139 ± 0.041
	After-flare	2010-07-26 - 2011-02-04	$5.938 \times 10^{-8} \pm 8.3 \times 10^{-9}$	2.348 ± 0.096
Column designation: Col. 1 – γ -ray activity state, Col. 2 – time interval used for spectral				
analysis, Col. 3 – $E > 100$ MeV flux in the units of photons cm ⁻² s ⁻¹ , Col. 4 – photon index.				

Figure 2: X-ray (0.3–10 keV) lightcurve by Swift/XRT.

Figure 3: Optical and near-infrared observations by the Kanata telescope, Swift/UVOT, NOT and OAGH. Open triangles indicate 2σ upper limits.

Figure 5: *Photon index as a function of flux.*

Figure 6: Fermi/LAT 30-months count map centered on GB6 B1310+4844. The Galactic coordinate grid is shown. Green crosses mark point sources included in the analysis.

Results

- Multi-wavelength observations confirm the identification of the flaring γ-ray source with the FSRQ GB6 B1310+4844 (Fig. 1–4, 6, and 7).
- Large Compton dominance in the SED (Fig. 7) suggest external Compton mechanism of γ-ray production in this source as opposed to the synchrotron

Quasi-simultaneous SED

Figure 4: Radio observations with the Effelsberg 100 m telescope (F-GAMMA program). self-Compton scenario.

- Significant evolution of the γ-ray spectrum is observed (Fig 5).
- Unusual flaring behavior: extreme infrared flare does not correspond to the brightest observed γ-ray state. The optical, X-ray, and radio fluxes are lower when the γ-ray flux is lower.

Figure 7: Spectral Energy Distribution (SED) of GB6 B1310+4844 during the two flaring periods in November–December 2009 (marked as "Flare1", red) and May–July 2010 ("Flare2", green).

Acknowledgements

We are deeply grateful to the people who contributed to the observations, analysis and discussion of GB6 B1310+4844, among them Frank Schinzel (MPIfR), Yasuyuki Tanaka (ISAS/JAXA), Ryosuke Itoh and Yasushi Fukazawa (Hiroshima University), Lars Fuhrmann, Ioannis Nestoras and Emmanouil Angelakis (MPIfR), Lise Escande (Universite Bordeaux 1), Yuri Kovalev (ASC Lebedev/MPIfR), Peter Curran (MSSL), Steve Healey (Stanford/KIPAC), Elizabeth Hays (NASA GSFC).