

Julius-Maximilians-

**UNIVERSITÄT** 

WÜRZBURG

# **MAGIC** and Multi-Frequency Observations of three HBLs in 2008

**III** Fermi Symposiur

Stefan Rügamer<sup>1</sup> on behalf of the MAGIC Collaboration

E. Angelakis<sup>2</sup> for the F-Gamma program, D. Bastieri<sup>3</sup> on behalf of the Fermi LAT team, D. Dorner<sup>4</sup>, Y. Y. Kovalev<sup>2,5</sup> for the RATAN team, A. Lähteenmäki<sup>6</sup>, E. Lindfors<sup>7</sup>, C. Pittori<sup>8</sup> on behalf of the AGILE team, R. Reinthal<sup>7</sup>, K. V. Sokolovsky<sup>2,5</sup>, A. Stamerra<sup>9</sup>, H. Ungerechts<sup>10</sup> on behalf of the IRAM team

<sup>1</sup>Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Germany <sup>2</sup>Max-Planck-Institut für Radioastronomie, Bonn, Germany <sup>3</sup>Università di Padova and INFN, Padova, Italy

<sup>4</sup>ISDC Data Center for Astrophysics, Versoix, Switzerland <sup>5</sup>Astro Space Center of Lebedev Physical Institute, Moscow, Russia <sup>6</sup>Aalto University Metsähovi Radio Observatory, Kylmälä, Finland <sup>7</sup>Tuorla Observatory, University of Turku, Piikkiö, Finland

<sup>8</sup>Agenzia Spatiale Italiana Science Data Center, Frascati, Italy <sup>9</sup>Università di Siena, and INFN Pisa, Siena, Italy <sup>10</sup>Instituto de Radio Astronoma Milimetrica, Granada, Spain

## Blazars – State of the Art

- dominating the extragalactic sky at High and Very High Energies (HE/VHE) • Spectral Energy Distribution (SED) ranging from radio up to TeV energies
- strong variability in flux as well as in spectral shape on all timescales
- only 40 Blazars detected at VHE up to now
- simultaneous multi-frequency measurements of the whole SED available for only about a dozen Blazars



# **Fundamental Questions**

- Blazar classification and evolution
- contribution to the Cosmic Ray background
- emission physics: emitting particle species, radiation mechanism, emission region type and location, ...

#### Radio unknown Starburst 8,2% 6,1% 4,1%

• Blazar variability: origin and physics of variability, Blazar duty cycle, inter-band correlation patterns, ...

## 1ES 1011+49.6

- one of the farthest VHE sources (z = 0.212)
- discovered at VHE by MAGIC in 2007<sup>a</sup>
- discovery following an optical trigger
- first TeV multi-frequency campaign on this object

#### **Observations** Metsähovi KVA Swift AGILE MAGIC 2008/05 2008/02 2008/03 2008/04 Results

#### **Mrk 180**

- nearby (z = 0.046)
- discovered at VHE by MAGIC in 2006<sup>b</sup>
- discovery following an optical trigger
- first TeV multi-frequency campaign on this object

#### Observations



# 1ES 2344+51.4

- nearby (z = 0.044)
- 3<sup>rd</sup> source detected at VHE (Whipple '98<sup>c</sup>)
- despite that, only one multi-frequency campaign including VHE data reported until now<sup>d</sup>

#### **Observations**









# **First Conclusions**

• first successful TeV multi-frequency campaign • flux variability present in optical as well as X-rays, but uncorrelated; VHE flux consistent with being constant, apart from 1 point with slightly higher flux well described by standard models and parameters

# **First Conclusions**

- first successful TeV multi-frequency campaign
- possibly correlated multi-frequency variability
- shift of the synchrotron peak in high state (> 5 keV)
- extreme Blazar candidate

modelling in

single-zone model does not fit the high state

# **First Conclusions**

- significant flux variability at radio, optical and X-rays
- flux at VHE consistent with being constant
- fluxes at all frequencies but radio among the lowest ever measured
- well described by standard models and parameters

# Bibliography

<sup>a</sup>Albert, J., et al., 2007, ApJ 667, L21 <sup>b</sup>Albert, J., et al., 2006, ApJ 648, L105 <sup>c</sup>Catanese, M., et al., 1998, ApJ 501, 616 <sup>d</sup>Beilicke, M., 2008, APS April Meeting and <sup>h</sup>Caraveo, P., Moriond 2009, 'High-Energy HEDP/HEDLA Meeting, April 11-15, St. Louis, Astrophysics with AGILE' Missouri <sup>e</sup>http://www.metsahovi.fi/legacy-2008-04-25/gallery <sup>f</sup>http://www.astro.utu.fi/research/telescopes <sup>g</sup>http://heasarc.nasa.gov/docs/swift/swiftsc.html

<sup>i</sup>http://www.sao.ru/ratan <sup>j</sup>http://www.mpifr-bonn.mpg.de/public/cvh/seite7.html <sup>k</sup>http://www.iram.es/IRAMES <sup>1</sup>http://fermi.gsfc.nasa.gov/public/resources/images

<sup>m</sup>http://images.nrao.edu/Telescopes/VLBA <sup>n</sup>Maraschi, L., & Tavecchio, F., 2003, ApJ 593, 667

<sup>o</sup>Weidinger, M., & Spanier, F., 2010, A&A 515, 18 <sup>p</sup>Kneiske, T. M., & Dole, H., 2010, A&A 515, 19



**bmb**+**f** - Förderschwerpunkt

#### Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung