

Blazar Counterparts for Low-Latitude Unidentified Sources: IFGL J2015.7+3708 and IFGL 2027.6+3335

E. Kara¹, M. Errando^{1,2}, E. Aliu^{1,2}, J. P. Halpern², R. Mukherjee^{1,2} & J. L. Richards³, A. C. S. Readhead³, W. Max-Moerbeck³ On behalf of the Fermi-LAT Collaboration ¹Department of Physics & Astronomy, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA ²Columbia Astrophysics Laboratory, Columbia University, 550 West, 120th Street, New York, NY 10027, USA ²Columbia Astrophysics California Biolawards, California Biolaward CA 91125, USA

Summary: We present the associations for IFGL J2015.7+3708 and IFGL J2027.6+3335 in the Cygnus region based on correlated variability between Fermi gamma-ray light curves and OVRO radio light curves. The resulting spectral energy distribution shows a broad Inverse Compton component.

Abstract

Previous studies in the Cygnus region proposed blazar counterparts for IFGL J2015.7+3708 and IFGL 2027.6+3335 [1,2,3]. Now, the analysis of 31 months of Fermi-LAT data reveals that the sources are variable, supporting the hypothesis of extragalactic origin of the gamma-ray emission. We present here the associations for IFGL J2015.7+3708 and IFGL J2027.6+3335 based on correlated variability between gamma-ray and radio light curves. We produce gamma-ray light curves from the LAT using the Fermi ScienceTools and obtain radio light curves at 15 GHz taken with the 40-m telescope at the Owens Valley Radio Observatory (OVRO). Simultaneous variability is seen in both bands for the two blazar candidates. The resulting spectral energy distribution shows a broad Inverse Compton component. Lastly, we resolve a third steady gamma-ray source in the region with spectral characteristics similar to known LAT pulsars.

IFGL J2015.7+3708 and IFGL J2027.6+3335

• We perform an analysis of two unidentified sources in the Cygnus region: IFGL J2015.7+3708 and IFGL J2027.6+3335 [4]

• With a 31-month analysis of Fermi-LAT data, we find:

• IFGL J2015.7+3708 is spatially coincident with blazar B2013+370

• IFGL J2027.6+3335 is best fit by two sources: J2025+3342, a variable source spatially coincident with blazar QSO B2023+336 and J2028+3333, a steady source with spectral characteristics similar to LAT pulsars [6].

Fig 1: Smoothed Fermi-LAT counts map for E > 300 MeV of IFGL [2015.7+3708 (left) and IFGL]2027.6+3335 (right) in the Cygnus region. Contours indicate 95% c.l. error ellipses for EGRET [5 white] and Fermi I1-month catalog [4, cyan]. Green circles indicate the 95% c.l. error circle derived in this analysis, and yellow points indicate the estable positions for the two blazars.

Spectral Energy Distribution

• Spectral energy distribution for the average state and high-state of B2013+370 with radio, X-ray and gamma-ray data

The flaring state in gamma-rays is consistent with a high state in X-rays (August 2010)
The hard X-ray spectrum

suggests a very broad Inverse Compton component

 Further analysis of optical data will be completed to better characterize the synchrotron emission component

Fig 2:Spectral Energy Distribution for IFGL J2015.7+3708 using OVRO (15 GHz), Swift XRT X-ray (2-10 keV) and Fermi Gamma-ray data (E > 300 MeV). The blue (average) points consist of archival XRT data from 2006, and an average over the 31 months of Fermi and OVRO data. The red (high-state) points consist of the Fermi and OVRO data from the entire month of August 2010, when there was a flare, and four concurrent XRT observations. The grey points are archival radio points from NED.

	RA [deg]	DEC [deg]	σ _{95%} [deg]	TS	Fit	Flux (1-100 GeV) [10 ⁻⁹ cm ⁻² s ⁻¹]	۲ (E _c)	Counterpart
IFGL J2015.7+3708	303.89	37.17	0.03	752	Powerlaw	8.93 ± 0.48	2.59 ± 0.05	B2013+370
J2025+3342	306.26	33.70	0.05	280	Powerlaw	3.19 ± 0.33	2.94 ± 0.09	QSO B2023+336, z=0.21
J2028+3333	307.08	33.55	0.03	1110	Powerlaw with Exponential Cutoff	9.13 ± 0.58	1.00 ± 0.08 (1.4 ± 0.2 GeV)	

Table 1: Position and spectral parameters obtained in the analysis of 31 months of Fermi data

Variability and correlation studies

• **IFGL J2015.7+3708** is a strong gamma-ray source associated with B2013+370, and shows clear variability. The discrete correlation function between the gamma-ray and radio light curves shows the highest correlation at zero lag, although the significance of these peaks is still to be evaluated.

• **J2028+3333** is a weak gamma-ray source associated with QSO B2023+336, and shows hints of variability. The hypothesis of a steady flux is discarded with a probability of 3.5 \cdot 10⁻⁵ (4.1 σ).

This work was supported in part by a NASA grant NNX10AP66G at Barnard College and NASA-Academy's Soffen Memorial Fund sponsored by American Pioneer Ventures.