
Abstract: The Fermi LAT detects cosmic gamma-rays in the E>20MeV energy regime. The Fermi science tools allow users to fit the LAT data with a model for the 
spatial and spectral emission, using a maximum likelihood approach to optimize the values of the model parameters and estimate the covariance matrix. The link between 
the model and data is provided by the instrument response functions describing the point-spread function, effective area, and energy dispersion of the LAT. However, 
uncertainties in these functions, and certain approximations made in applying them to the LAT data, will produce systematic errors in the parameters of fitted spectra. For 
bright gamma-ray emitters on long timescales, these systematic effects may be larger than the statistical errors. We present methods for evaluating the size of the 
systematic errors which arise from uncertainties in the effective area curve.

We discuss methods to estimate the effects of systematic errors on spectral fits to Fermi-LAT data.
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2. The Monte Carlo and bootstrap method:
A Bayesian approach would marginalize over the distribution of plausible effective area curves, p(A), to 
obtain the posterior distribution of the fit parameters θ, given the data D:

Here p(θ|D,A) is the likelihood used to fit the data. This integral would be evaluated over some multi-
dimensional space that spans possible A(E)s, either parametrically or as tabulations of families of 
curves. In general, it is too computationally expensive to evaluate p(θ) by direct integration. Monte Carlo 
methods are often used instead: For each trial k, draw an effective area curve from its pdf, Ak ~ p(A). 
Given that curve, compute the likelihood and draw the model parameters using that likelihood as the 
posterior pdf, i.e., θk ~ p(θ|D,Ak). The resulting θks would then provide an estimate of the posterior 
distribution of the model parameters. Since evaluating p(θ|D,Ak) over the θ-parameter space is itself 
computationally difficult, Lee et al. (2011) have proposed a Markov Chain Monte Carlo approach that 
would only require evaluating p(θ|D,Ak) at specific trial points of θk.
All of these approaches, including the bracketing method, involve recomputing the likelihood under the 
assumption of alternative effective area curves. For LAT data, because the Aks must be integrated over 
a constantly changing observing profile, these methods can still impose a large computational burden. 
Instead of re-evaluating the likelihood of the observed data using alternative effective areas, we consider alternative datasets that are generated under the different Aks 
and evaluate the likelihood using the nominal IRFs. This can be accomplished via a weighted bootstrap resampling of the event data. In standard bootstrap methods, 
simulated datasets are drawn via direct resampling (with replacement) of the observed data. To mimic the effect of generating data under an alternative Ak, we define a 
probability factor for each candidate event i:

Pik =Ak(Ei,θi,φi)/Anom(Ei,θi,φi),
where Ei, θi, and φi are the photon energy and aspect angles in instrument coordinates (This prescription 
neglects that these are measured quantities, whereas A is defined in terms of true quantities). For Pik ≤ 1, 
event i is retained in the sample if ξ < Pik, where ξ is a random uniform deviate on [0,1). If Pik > 1, then 
event i is retained and a copy of i is also added if ξ < Pik −1 (This is assumes Pik ≤ 2, but it can be easily 
generalized). In standard bootstrap, Pik ≡ 1.
As an example of these methods, we show in Fig. 4, distributions of integral flux and photon index for a 
simulated point source using straight bootstrap (black histograms) with the profile likelihood distributions overlaid (black curves). We also plot the distributions obtained 
using the weighted bootstrap (red histograms). For those, we apply a modification of Eq. 1 to generate the family of effective area curves,

Ak(E) = Anom(E) × ( 1 + nk × |b(E)| × err(E) ),
where nk ~ N (0, 1), i.e., drawn from a normal distribution with zero mean and unity variance.

Fig. 4: Estimates of posterior distributions using profile likelihood (black curve), 
standard bootstrap (black histogram), and weighted bootstrap to include effective 
area systematic uncertainties (red histogram).

Estimator Integral flux
[10-5 ph/cm2/s]

Photon Index

Profile likelihood 0.954 ± 0.053 1.684 ± 0.020
Standard bootstrap 0.954 ± 0.049 1.684 ± 0.022
Weighted bootstrap 0.968 ± 0.164 1.684 ± 0.072

Table 2: Fit parameters and errors from the various posterior estimators.

1. The bracketing-IRF method:
In this method, modified sets of instrument response functions (IRFs) are used to evaluate the effects of 
uncertainties in the effective area curve on the fitted spectral parameters. The procedure is as follows: 
(1) Evaluate the parameters of the spectral model in the normal way, using the standard LAT data 
analysis tools, ScienceTools, and the standard IRFs, for example P6_V11_DIFFUSE. (2) Produce sets 
of modified IRFs designed to affect each of the model parameters maximally within the estimated 
uncertainty on the effective area curve. (3) Rerun the analysis with each set of modified IRFs and note 
the changes in the spectral parameters of the source of interest, which give the systematic errors. In 
this poster we present sets of bracketing IRFs appropriate to evaluating the systematic errors on the 
flux and spectral index of a power-law fit.
For each set of modified IRFs the effective area curve is scaled using the maximum absolute fractional 
error function, err(E), as shown in Figure 1, modulated by a bracketing function, b(E), chosen to affect 
the parameter of interest. The modified effective area is produced from the nominal value according to:

Amod(E) = Anom(E) × ( 1 + b(E) × err(E) ).
For a power-law model two sets of bracketing functions are used. The first set consists of constant-valued functions, b(E)=±1, which are 
used to evaluate the systematic errors on the flux constant of the power law. The second set consists of smoothed step functions, 
defined by b(E)=±tanh(log10(E/Epivot)/K), centered on the pivot energy of the nominal power-law fit, Epivot, with smoothing factor of K=0.13, 
which are used to evaluate the systematic error on the spectral index of the power law. An example of the second set of functions is 
shown in Figure 2, centered on an energy of 1.15GeV, the pivot energy derived from an analysis of 1-year of Fermi-LAT data from the 
TeV blazar Mrk 421, using the standard P6_V11_DIFFUSE IRFs. The modified effective area curves produced with these bracketing 

functions are shown in Figure 3.
The results of power-law fits to the 1-year Mrk 421 dataset are shown in 
Table 1. In this example the nominal value of and statistical error on the 
spectral index is Γ=1.771±0.019. The systematic errors derived with this 
method are ΔΓsyst=+0.076/-0.103, considerably larger than the statistical 
error for this bright source. It should also be noted that, due to the 
correlation between the integral flux and spectral index, the largest change in the integral flux is seen in the 
results derived with the IRFs used to study the spectral index, and these values should be quoted. Again, 
the systematic errors of ΔFsyst =+13.8/-11.0 × 10-8ph/cm2/s are larger than the statistical errors, showing the 
importance of studying the systematic errors for bright sources.

IRF set Integral flux
[10-8 ph/cm2/s]

Photon Index

Nominal, P6_V11_DIFFUSE 168.3 ± 5.6 1.771 ± 0.019
Flux high, constant b(E)=-1 178.3 ± 5.8 1.731 ± 0.019
Flux low, constant b(E)=+1 159.2 ± 5.3 1.801 ± 0.018
Index soft, b(E) as in Fig. 2 157.3 ± 5.0 1.847 ± 0.019
Index hard, b(E) as in Fig. 2 182.1 ± 6.2 1.688 ± 0.019

Table 1: Results of power-law fits to sample dataset using bracketing IRFs.

(Eq. 1)

Fig. 3: Modified effective areas for 
P6_V11_DIFFUSE IRFs, front-
converting (thick curves) and back-
converting events (thin curves).
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Fig. 2: Smoothed-step bracketing error 
function, b(E), for evaluating systematic 
error on power-law index.
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Fig. 1: Fractional error function, err(E), 
with values of 10% at 100MeV, 5% at 
575MeV and 20% at 10GeV.
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